iSAGE model farm and challenging scenarios

(أوجستين ديل برادو) Agustin del Prado

Inmaculada Batalla (إنمكولادا باتايا) Asma Jebari (أسماء جباري) Guillermo Pardo (قيارمو بردو) BASQUE CENTRE FOR CLIMATE CHANGE Alima Aldakela Ikanga Sustainability, that's it!

Modelling impacts of climate change, adaptation measures and GHG trade-offs/synergies in small rums. in Europe

Elena Galán

BASQUE CENTRE FOR CLIMATE CHANGE Klima Aldaketa Ikergai

Sustainability, that's it!

Guillermo Pardo

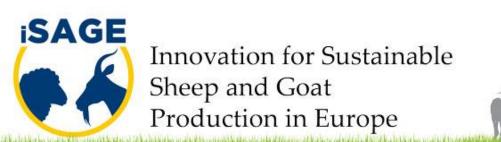
Maria Almagro

Inmaculada Batalla

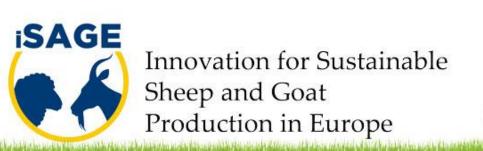
Asma Jebari

Aitor Andone

Whole iSAGE team

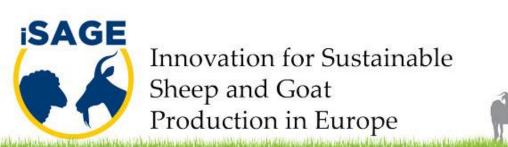


Main objective of this session


Examine the scope of new strategies, including land-based and management changes and innovations, for making sheep and goats production more sustainable, reducing its environmental impact and enhancing resilience to oncoming challenges (e.g. climate change).

Where does the info in this session come from?

Outputs from the different work packages of the ISAGE project and specific modelling exercises using national GHG inventories methodologies and the new farm model developed in ISAGE (SIMS_{SR})



Outline

- What are the challenges?
- The tool to analyse farm scenarios:

- Climate change challenge (impacts and as GHG emitter)
- Potential solutions (examples)

Challenges

Most important challenges in European small ruminants sector

Weaknesses

- Low promotion of local breeds
- poor business management training
- Low professionalization
- Slow adoption of innovations
- Low adaptability of high producing breeds.

External threats

- Low consumer education in product
- Low consumer knowledge in products
- Researchers not address real problems
- Unfair trade, lack of traceability
- Poor recognition of public services

D	eliverable No: 4.2							
Summary of fut	ure challenges and update to the							
review of far	rm management innovations							
Project acronym: iSAGE Project full name: Innovation for S Grant agreement number: 679302 Start date of project: 1 March 2016 Duration of project: 48 months	ustainable Sheep and Goat Production in Europe							
Project website: <u>www.iSAGE.eu</u>								
Working Package	4							
Short name of lead participant	CSIC							
Other Partners Participating	AUTH, CITA							
Type*	R							
(R, DEM, DEC, OTHER)								
Dissemination level** PU								
(PU, CO, CI)								
Deliverable date according to	28/02/2019							
Carant Agreement 28/02/2019								
Actual delivery date	28/02/2019 (updated version 11/6/2019)							
Relevant Task(s)	4.1							
Report version	2							

"Type: R = Document, report (excluding the periodic and final reports); DEM = Demonstrator, pilot, prototype, plan design DEC = Websites, patents filing, press & media actions, videos, etc.; OTHER = Software, technical diagram, etc.

**Dissemination level: PU = Public, fully open, e.g. web; CO = Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified, information as referred to in Commission Decision 2001/844/EC.

Output from participatory process

Most important challenges in European small ruminants sector

Weaknesses

- Low promotion of local breeds
- poor business management training
- Low professionalization
- Slow adoption of innovations
- Low adaptability of high producing breeds.

External threats

- Low consumer education in product
- Low consumer knowledge in products
- <u>Researchers not address real problems</u>
- Unfair trade, lack of traceability
- Poor recognition of public services

D	eliverable No: 4.2
Summary of fut	ure challenges and update to the
review of far	rm management innovations
Project acronym: iSAGE Project full name: Innovation for S Grant agreement number: 679302 Start date of project: 1 March 2016 Duration of project: 48 months	iustainable Sheep and Goat Production in Europe
Project website: <u>www.iSAGE.eu</u>	
Working Package	4
Short name of lead participant	CSIC
Other Partners Participating	AUTH, CITA
Type*	R
(R, DEM, DEC, OTHER)	
Dissemination level** (PU, CO, CI)	PU
Deliverable date according to Grant Agreement	28/02/2019
Actual delivery date	28/02/2019 (updated version 11/6/2019)
Relevant Task(s)	4.1
Report version	2

"Type: R = Document, report (excluding the periodic and final reports); DEM = Demonstrator, pilot, prototype, plan design DEC = Websites, patents filing, press & media actions, videos, etc.; OTHER = Software, technical diagram, etc.

**Dissemination level: PU = Public, fully open, e.g. web; CO = Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified, information as referred to in Commission Decision 2001/844/EC.

Output from participatory process

Extra challenges in Mediterranean/European small ruminants sector: climate change

Affected by climate change

Climate change already affecting German farmers

In Germany, some like it hot — this summer's unusually hot, sunny weather, that is. For many farmers, the prolonged heat means smaller harvests and diminished food reserves for their livestock. Will food prices soar?

Cows have little to graze upon in this drought-stricken field in the German state of Saxo

COMPRESENCE: Mediterranean is warming up faster than the rest of the

planet, report warns

Some 500 million people are at risk of drought, lack of freshwater and food shortages if no action is

0000

Livestock contributes 15% of global greeenhouse gas emissions. Photograph: Bloomberg/Bloomberg via Getty

But, also as <u>driver of climate</u> <u>change</u>

Challenges: climate change (GHG/mitigation)

nature NEND Y

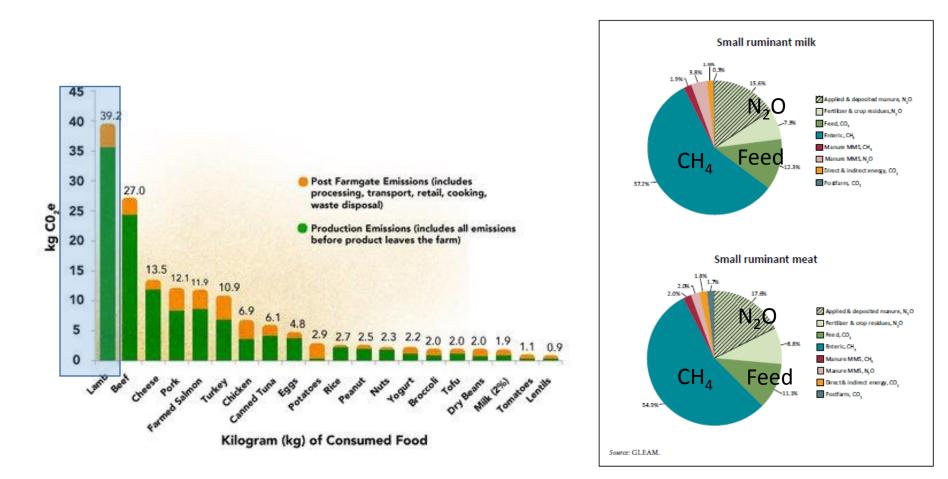
NEWS - AN ADMINITERY - CORRECTION OF AUGUSTIZES, UPDATE OF ADGUSTIZES, CORRECTION IS AUGUSTIZED

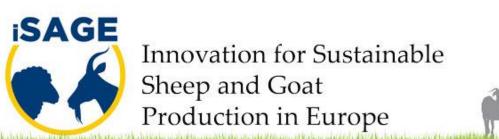
Eat less meat: UN climate-change report calls for change to human diet

The report on global land use and agriculture comes amid accelerating deforestation in the Amazon

Get the most important orience staries of the day, free in your inhos.

to have also to force action on global. warming!




Eightup for Solare Briefleg.

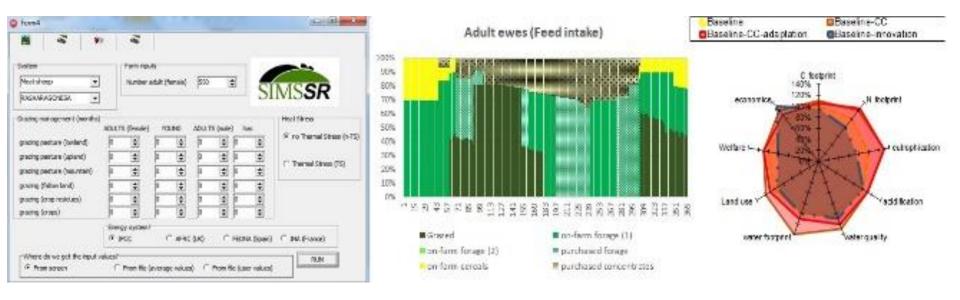
Latest IPCC-UN report on land claimed that reducing consumption of animal products are key to mitigate climate change

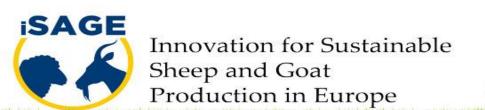
Challenges: climate change (GHG/mitigation)

Extra challenges in Mediterranean/European small ruminants sector: policies

- Different policies affect/may affect in future
- Agricultural policies, climate change (Paris Agreement) and environmental regulations
- Policies need to be considered in integrated frameworks and not in isolation

Extra challenges in Mediterranean/European small ruminants sector: <u>diversity of systems</u>




- Breeds: >25
- Production systems (typologies)
 Intensivity
 - □ Feeding
 - Land use
 - Climatic conditions
 - Reproductive systems...

The tool SIMSSR

The tool to analyse farm scenarios:

iSAGE

Innovation for Sustainable Sheep and Goat Production in Europe

Deliverable No: 4.3.

New holistic model that can be used to redesign terrestrial small ruminant's livestock systems

Project acronym: iSAGE

Prjoect full name: Innovation for Sustainable Sheep and Goat Production in Europe

Grant agreement number: 679302

Start date of project: 1 March 2016

Duration of project: 48 months

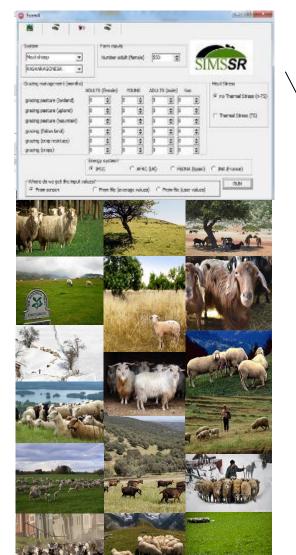
Project website: www.iSAGE.eu

Working Package	4
Short name of lead participant	BC3
Other Partners Participating	AUTH
Type* (R, DEM, DEC, OTHER)	R
Dissemination level** (PU, CO, CI)	PU
Deliverable date according to Grant Agreement	28/02/2019
Actual delivery date	28/02/2019

Table 1 - Key information

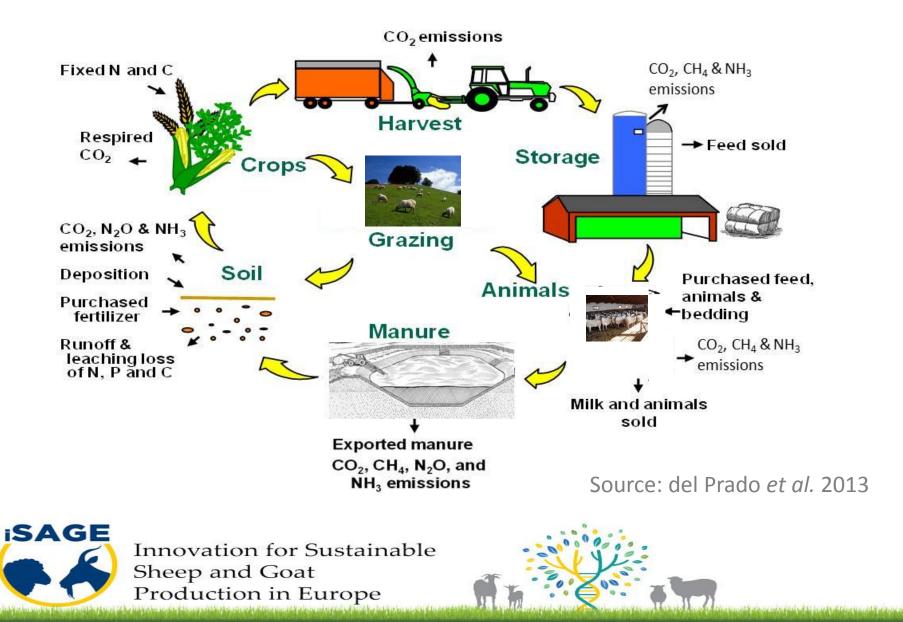
Country	Spain
Authors of this	Agustin del Prado ¹ , Inmaculada Batalla ¹ , Guillermo
Report	Pardo ¹ , Asma Jebari ¹ , Athanasios Ragkos ² , Alexandros Theodoridis ² and Georgios Arsenos ² ¹ Basque Centre For Climate Change (BC3) ² Aristotle University of Thessaloniki (AUTH),
Date	28-02-2019

BASQUE CENTRE FOR CLIMATE CHANGE Klima Aldaketa Ikergai Sustainability, that's it!

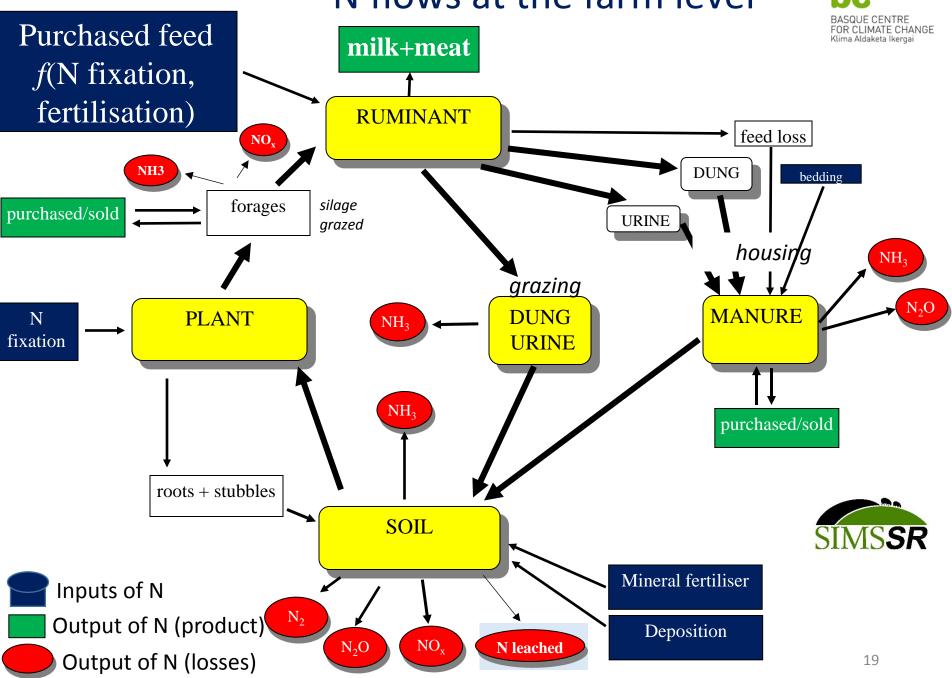

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

The tool to analyse farm scenarios:

Simulates the effect of management x genetics x soil x climate on

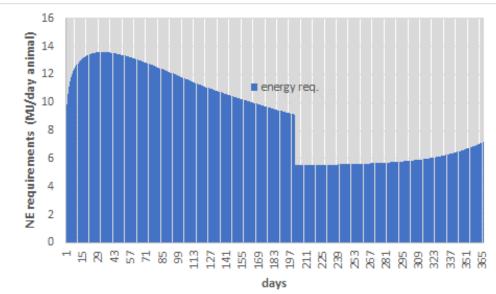

> Farm environmental performance (losses of N and C {and sinks of soil SOC}) Basic economics Other atributes of sustainability

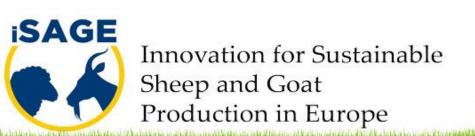
Boundaries: Farm, includes pre-farm gate emissions Generic submodels Semi process-based Written in DELPHI (PASCAL-based programming) language) Main use: strategic run what-if scenarios (current,



Main components of a ruminant livestock system

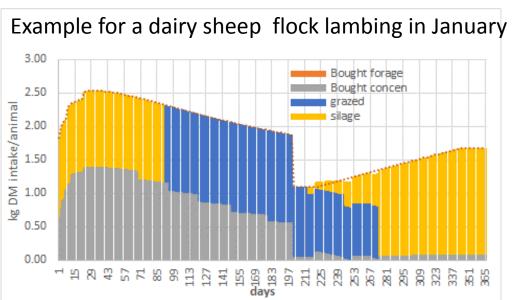
N flows at the farm level




5 Flocks : 3 ewe/doe, adult male, lambs/kids, Young (Non-kids/lambs)

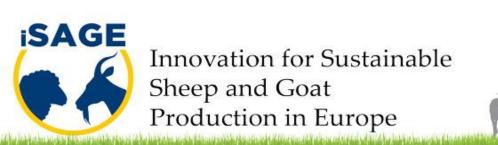
Each flock is simulted (daily) feeding according to:

- Management
- availability of farm feed
- weight/weight gain/loss
- production level

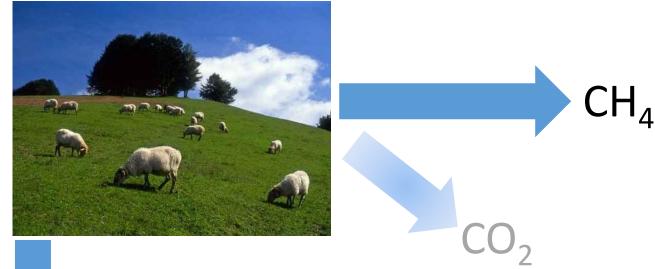

MJ simulated intake/day ewe

Each flock is simulted (daily) feeding according to:

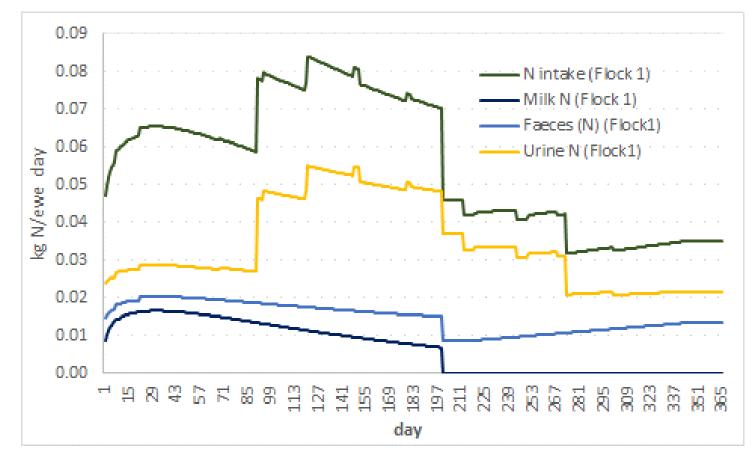
- Management
- availability of farm feed
- weight/weight gain/loss
- production level



Kg DM simulated intake/day ewe for each type of feed



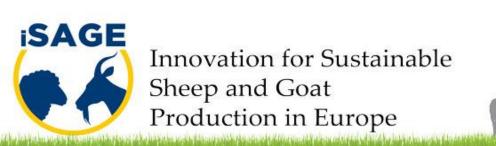
- <u>Grazed</u> forage: Grassland (lowland, upland, Mediterranean, highlands/mountain), grazed fallow, grazed crop residues
- <u>Home-grown forage for harvest</u>: Grassland (silage/hay from lowland), forage maize, forage legume
- <u>**Purchased forage</u>**: Any generic type (calculated from forage left required)</u>
- Home-grown grazed whole crops: depending on available has and yields
- Home-grown grains for harvest: depending on available has and yields
- <u>Purchased concentrates: different types</u> (calculated from energy required to meet energy demands)

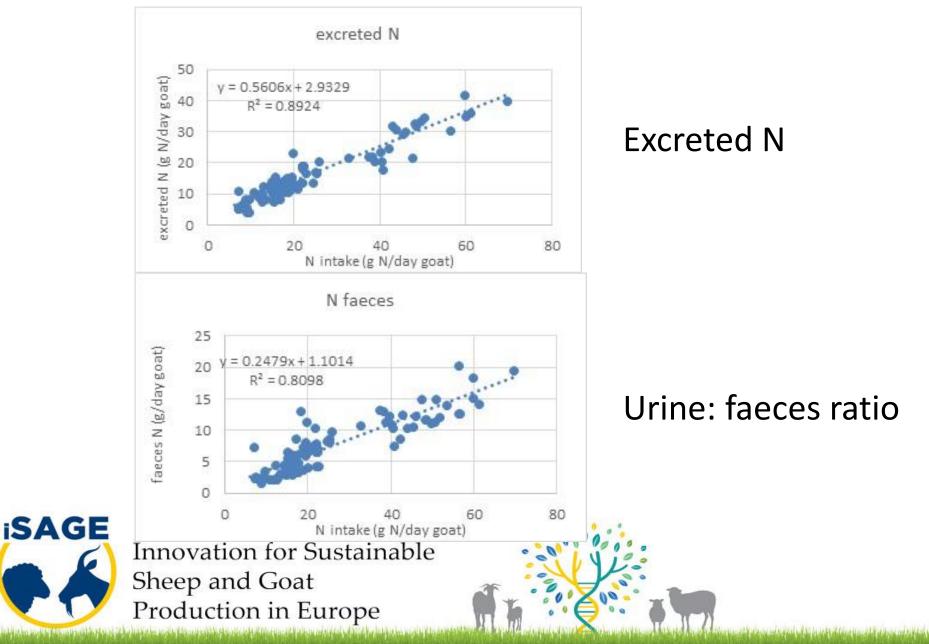

Feed allocation in SIMSSR : calendar How much do they eat or meat/milk produce?

- Energy and nutrient requirements (e.g. protein)
- Feed on offer (e.g. fiber, energy, protein)
- Genetics
- Structure of the herd

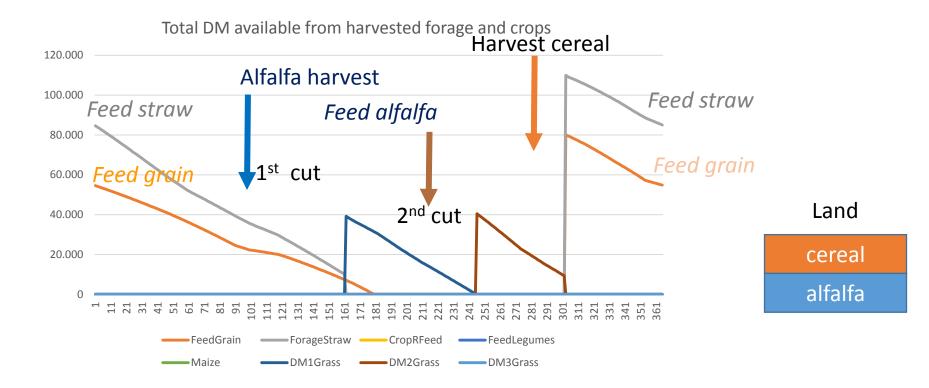
How much do they excrete? (urine & faeces)

N balance (simulated) at the Flock level SIMSSR

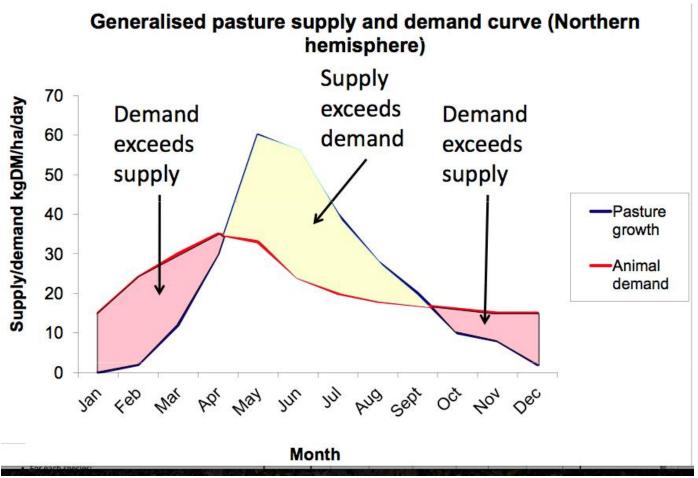



N balance (simulated) at the Flock level SIMSSR

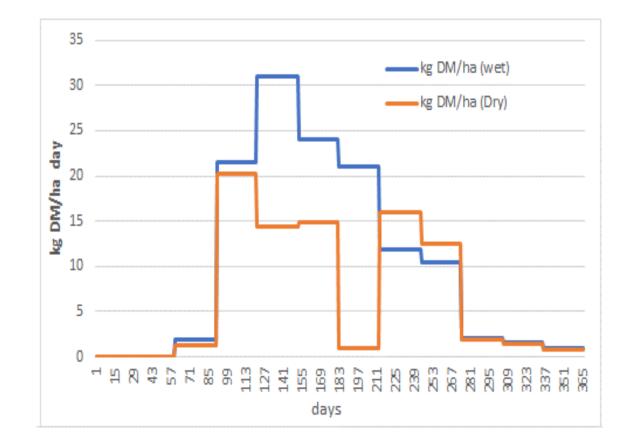
For goats is based on:


- 65 peer-reviewed studies on trials on energy and N balances (goats)
- 18 different breeds
- Different feeding treatments, gender, lactating, other...
- Dry matter intake: 0.93 (0.14-2.51) kg DM/day
- Nitrogen intake: 25 (6.1-69) g N/day
- Body weight: 40 (15-64) kg
- Digestibility (DM): 68 (49-83) %

N balance (simulated) at the Flock level SIMSSR



Straw and alfalfa hay for next year left



http://bvetmed1.blogspot.com/2013/01/introduction-to-

livestock-production.html

- How much herbage is produced?
- Digestibility, protein?
- How much N fixation?

Grass productivity depending on climate

Default data for different breeds in

Table 1. Input data for dairy sheep breeds.

		Assaf	Churr a	Lacau ne	Latxa	Manch ega	Frizar ta	Chios	Laca une	Manec h Red Face	Awa ssi
Country		Spain	Spain	Spain	Spain	Spain	Greec e	Greece	Franc e	France	Turk ey
Prolificit y	lambs alive/ birth	1.8	1.38	1.65	1.27	1.5	1,6 ± 0,1	1.8-2.2	1.59	1.3	1
Fertility	%	96	96	96	96	96	>90	>90	94.4	90	87
Birth/yea r	nº/ye ar	1.2	1.2	1	1	1.5	1	1	1	1	1
Lactation	days	1.2	120	150	140	150	190 ± 10	193 ± 35	170	165	162
Milk	litres	400	120	350	180	187.5	260 ± 30	308 ± 96	320	240	243
Fat	%	6.65	6.8	7.04	7.4	7.5	6.4	5-6	7.5	7.05	7.47
Protein	%	5.4	5.6	5.56	5.6	5.96	5.6	5.5	5.6	5.35	5.74
1st birth	mont h	15	15	14	19	17.6	13	9-10	13	14	15
Milking	numb er	6	5	6	3	7	6				6
Reproduc tive live	years	5	6		3.2		6	5-6	3.2	3.9	5
Liveweig ht	kg	65	50	70	50	70	65	58	75	50	50-55
Wool	kg	2.8	2	2.1	1.75	2	2	1.85	0.8	1.8	2.5
Replacem ent rate	%	25	20	25	20	20	25		28		25

Table 3. Inputs data for goat breeds.

		Murciano-Granadina	Florida	Saaner
Country		Spain	Spain	France
Main production		Milk	Milk	Milk
Prolificity	kids/birth	1.8	1.8	1.8
Fertility	%	90	90	90
Birth/year	nº/year	1	1	0.8
Liveweight	kg	50	60	75
Milk production	litres	530	575	920
Milking	Days	250	247	300
Fat	%	5.6	4.8	3.68
Protein	%	3.6	3.4	3.36
Age 1st lambing	months		14	12
milking	number	6	7	3.2
Replacement rate	%	20	20	30

- Adult ewe/does
- Adult male
- Young animals (not lamb/kids)
- Lamb/kids

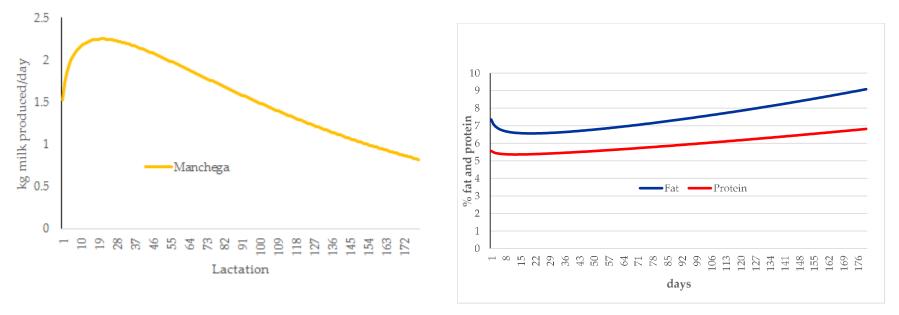
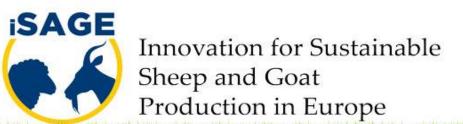
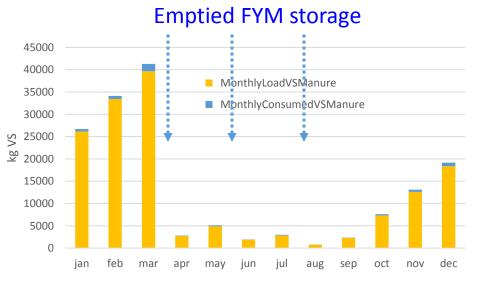



Figure 8. Lactation curve Wood function for Manchega

Figure 9. Fat and Protein Curve for Manchega breed using Wood factors.

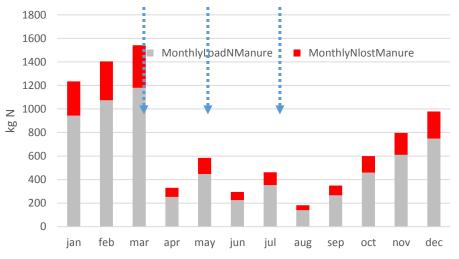
Manure handling in SIMS_{SR}

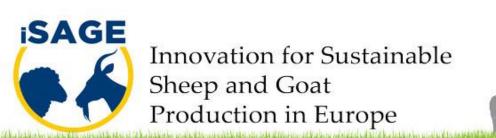
How much excreta?


How is it mixed & collected?

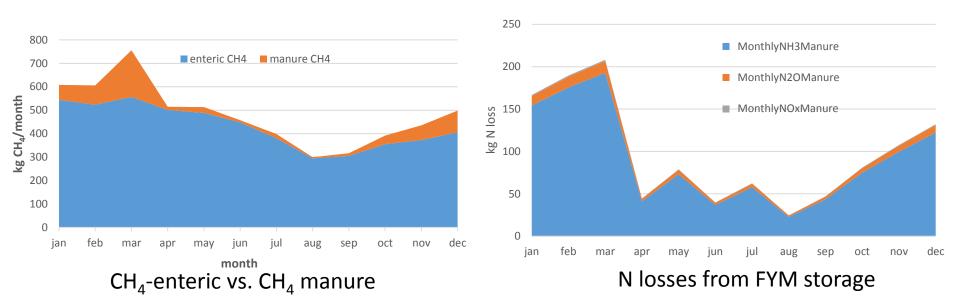
How much and how is it stored?

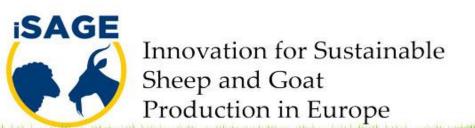
Is manure treated?


How much and how is applied?

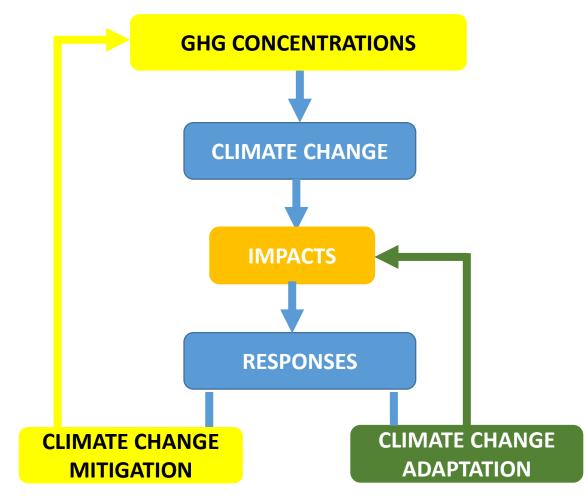


Manure Volatile solids (load and consumed) at storage


Emptied FYM storage

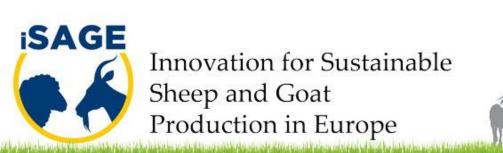


Manure N (load and loss) at storage



Climate change challenge

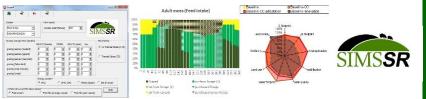
Climate change dimenssions


Summary of impacts on feed-related issues

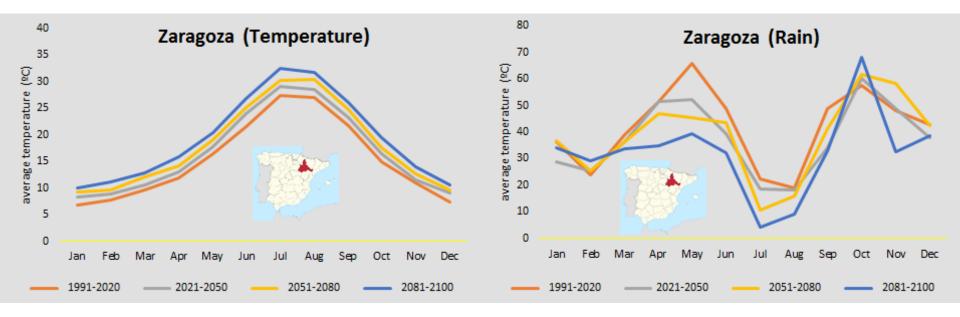
For extensive/semi-extensive systems

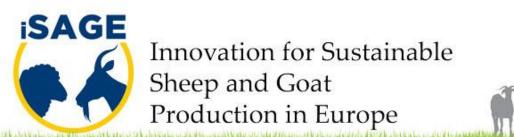
- reductions in available pasture for grazing, forage and cereal production (specially from rainfed systems)
- more dependent on external feed (assuming that no extra, possible even fewer land will be spared for small ruminant productions)
- Will public services be paid for? (market or subsidies)

For intensive systems

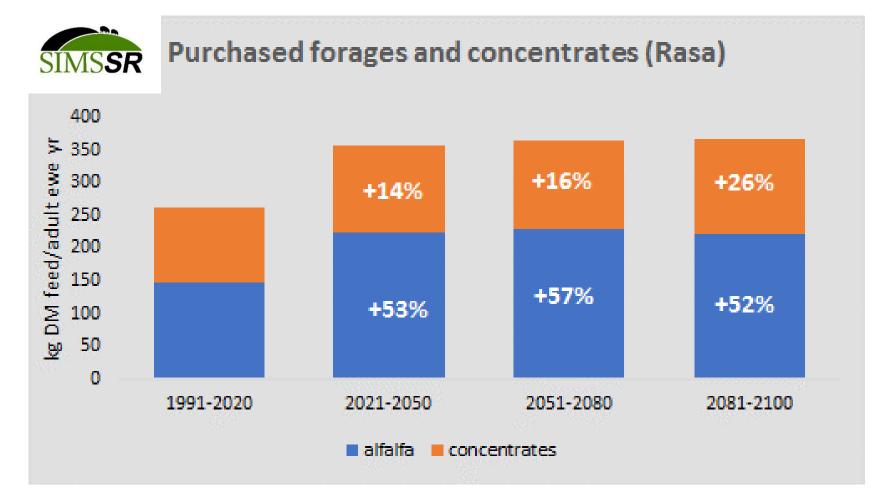

 feed prices (product prices too) will affect most the viability of the farms.

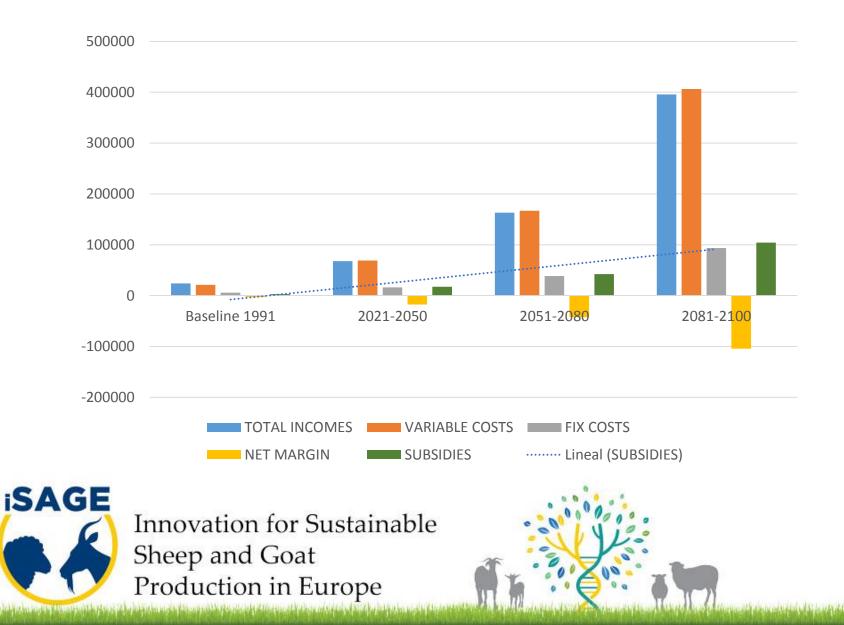
Modelled with SIMS_{SR} (Del Prado et al. 2019) •

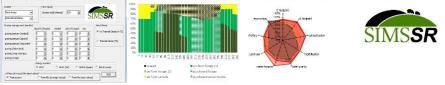

- Breed: rasa Aragonesa
- Meat production (lamb)
- 1.5 births/year
- Location: Zaragoza (Spain)
- Number of ewes: 550


FEED

- Grazed marginal land (pastures)
- Grazed rainfed alfalfa
 - Alfalfa hay (homegrown harvest or purchased)
 - Cereals (homegrown barley)
 - Barley straw (homegrown barley)
 - Concentrates

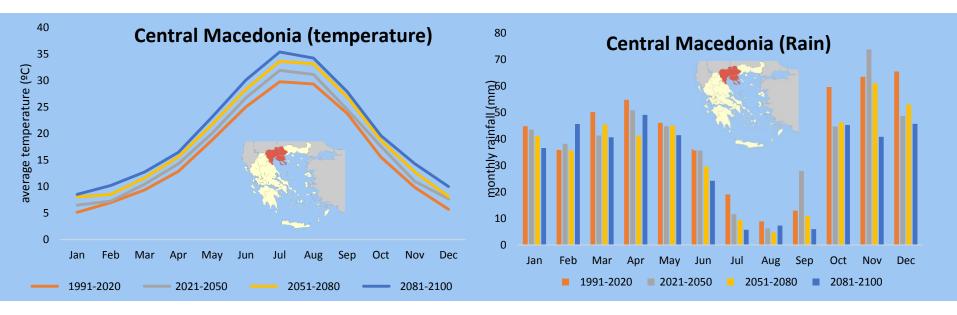






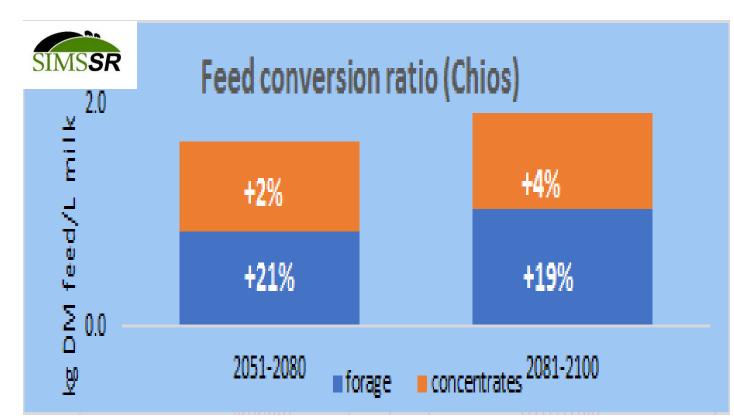
We need to buy more forage and concentrates are required because of reduced yields due to climate change

Modelled with SIMS_{SR} (Del Prado et al. 2019)

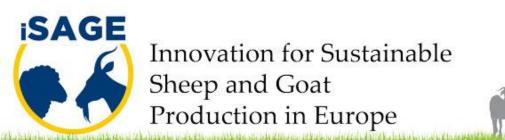

Innovation for Sustainable Sheep and Goat Production in Europe Dairy sheep system in Greece (Chios breed) Reproductive system: 1 lambing per year 300 ewes intensive

FEED

- No grazing
- Alfalfa hay from irrigated land (homegrown/bought)
- Cereals (homegrown wheat)
- Wheat straw (homegrown wheat)
- Concentrates



2021-2050 rainier in autumn, not so drier compared with 1991-2020


- No effect for 2021-2050
- over 20% more feed per L produced after year 2050 is required

Adaptations to climate change (examples)

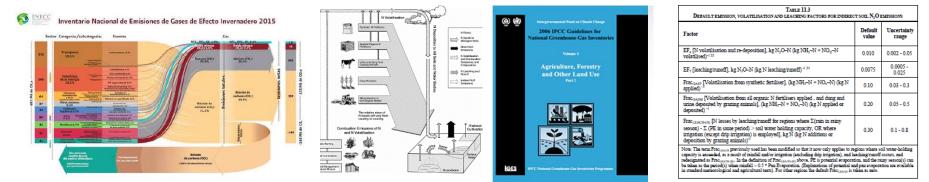
- Breeding (animal or plant)
- More dense diets in heat stress conditions
- Irrigate land
- Spraying/shading

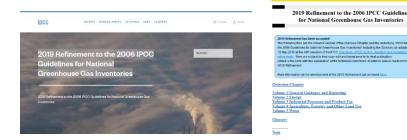
Greenhouse gases from small ruminants productions systems, small ruminants as a driver of climate change

Innovation for Sustainable Sheep and Goat Production in Europe

IPCC authors

What is the role of small ruminants for reducing the effect of agricultural sector on climate change?


- Paris agreement: reductions in GHG emissions. Agriculture?
- GHG Inventories will underpin countries INDCs (Paris agreement) and inform global progress towards -2°C

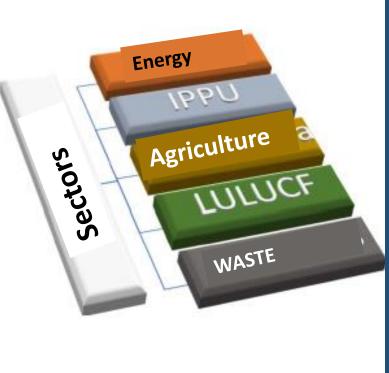


Greenhouse gases-Importance of changes in IPCC National GHG Inventories and methodologies

From 2006 all national inventories have used this guideline (IPCC, 2006)

From 2019 national inventories can use a new refinement guideline (IPCC, 2019)

https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html


Innovation for Sustainable Sheep and Goat Production in Europe

IPCC authors

What is a national GHG inventory?

- Antropogenic emissions and sinks
- National territory
- Inventory year and temporal serie
 - Greenhouse gases (2006): CO₂, CH₄, N₂O, HFC, NF3, SF5CF3, halogenous ethers and other halocarbons not covered by Montreal Protocol
- Other gases: Nox, NH₃, COVDM, CO, SO₂

Each sector comprises individual categories (e.g. transport) and subcategories (e.g. automobiles). Countries develop the inventory at the level of subcategory

•

CHAPTER 10

EMISSIONS FROM LIVESTOCK AND MANURE MANAGEMENT

Some changes relevant for small ruminants

% relative to gross energy (GE) intake

heat

Body retention

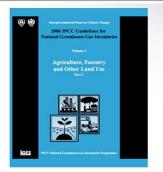
4% (1%-8%)

urine

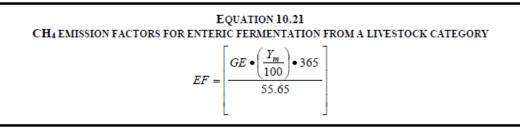
faeces

34% (17-64%)

Intake (feed)


 CH_4

5.3% (1.2-10.3%)



Methane outputs compared with IPCC (2006)

 Provides methods for all emissions and removals from Agriculture and LULUCF
 Required for UNFCCC reporting in 2015

Where:

EF = emission factor, kg CH4 head-1 yr-1

GE = gross energy intake, MJ head-1 day-1

Ym = methane conversion factor, per cent of gross energy in feed converted to methane

The factor 55.65 (MJ/kg CH₄) is the energy content of methane

%CH4 from Gross energy intake \rightarrow 5.3% (1.2-10.3%) (goats) Y_m=5.5% (goats)

sheep

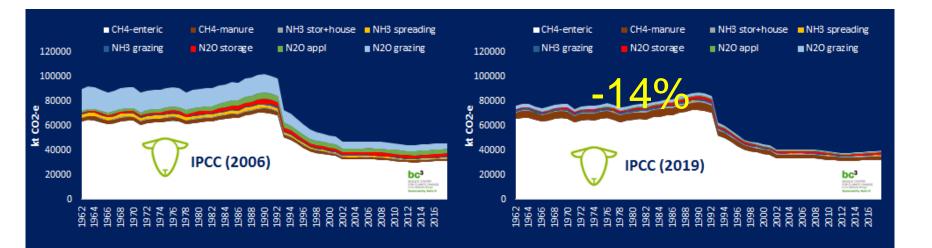
SHEEP CH4	TABLE 10.13 CONVERSION FACTORS (Y _M)
Category	Y _m ^a
Lambs (<1 year old)	4.5% <u>+</u> 1.0%
Mature Sheep	6.5% <u>+</u> 1.0%
^a The \pm values represent the range.	

1	TABLE 10.13 Sheep and goats ch4 conversion factors (Ym) (Updated)							
	Category	Y _m ¹						
	Sheep	6.7% <u>+</u> 0.9						
	Goats	5.5% <u>+</u> 1.0						
	Sources and assumptions to calculate the Y_m for goats are detailed in Annex 10B.3. ¹ The \pm values are the the standard deviation of the mean of the Y_m .							

CHAPTER 11

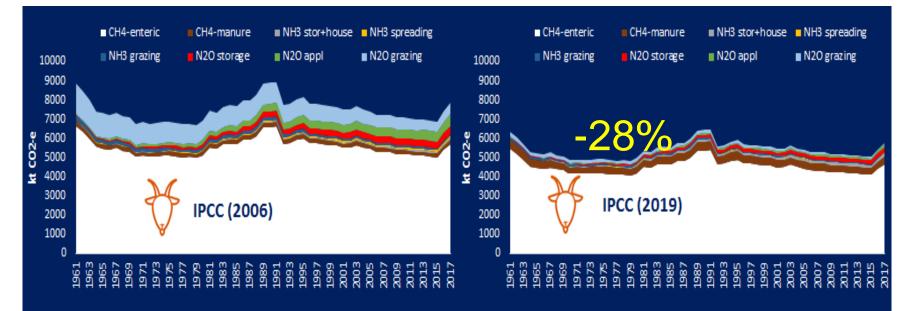
N₂O EMISSIONS FROM MANAGED SOILS, AND CO₂ EMISSIONS FROM LIME AND UREA APPLICATION

Some changes relevant for small ruminants


Estimation of GHG from small ruminants

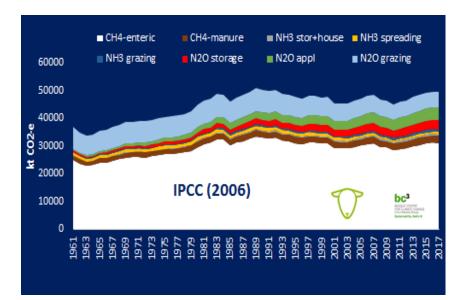
DEFAULT EMISSI						
	Aggregated		Disaggregated			
Emission factor	Default value	Uncertainty range	Disaggregation ⁴	Default value	Uncertainty range	
EF ₁ for N additions from synthetic fertilisers, organic		1 and the second	Synthetic fertiliser inputs ⁵ in wet climates	0.016	1.6%	vs.1%
amendments and crop residues, and N mineralised from mineral soil as a result of loss	0.010	0.001 - 0,018	Other N inputs ⁶ in wet climates	0.006	0.6%	<u>(IPCC 2006)</u>
of soil carbon ¹ [kg N ₂ O–N (kg N) ⁻¹]			All N inputs in dry	0.005	0.5%	
EF _{1FR} for flooded rice fields ^{2,7}		0.000 - 0.029	Continuous flooding	0.003	0.000 - 0.010	
[kg N ₂ O–N (kg N) ⁻¹]	0.004		Single and multiple drainage	0.005	0.000 - 0.016	
EF3PRP, CPP for cattle (dairy, non-		0.000-0.014	Wet climates	0.006	- <u>0.6%</u> -	<u>vs.2%</u>
dairy and buffalo), poultry and pigs ³ [kg N ₂ O–N (kg N) ⁻¹]	0.004		Dry climates	0.002	0.2%	<u>(IPCC 2006)</u>
EF3PRP, so for sheep and 'other animals' ³ [kg N ₂ O–N (kg N) ⁻¹]	0.003) 0.000 - 0.010	-	-	0.3%	<u>vs.1%</u>
Sources:						(IPCC 2006)

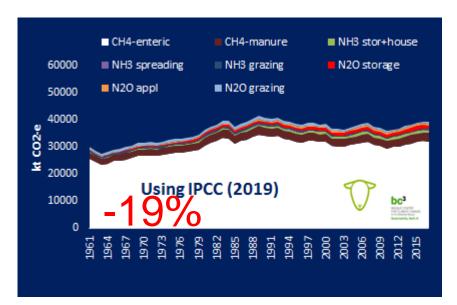
Estimation of GHG from small ruminants in Europe



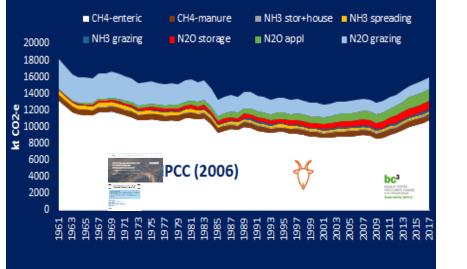
<u>**lower</u>** GHG emissions estimates compared with the estimate using the currently widely used IPCC (2006)</u>

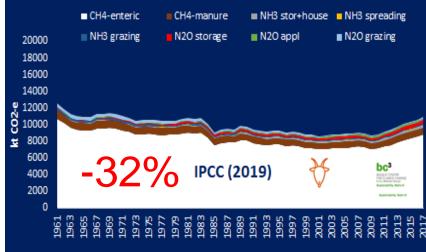
Estimation of GHG from small ruminants in Europe

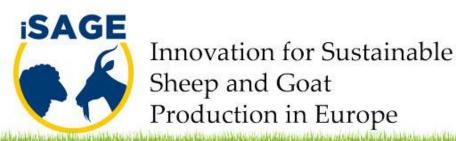


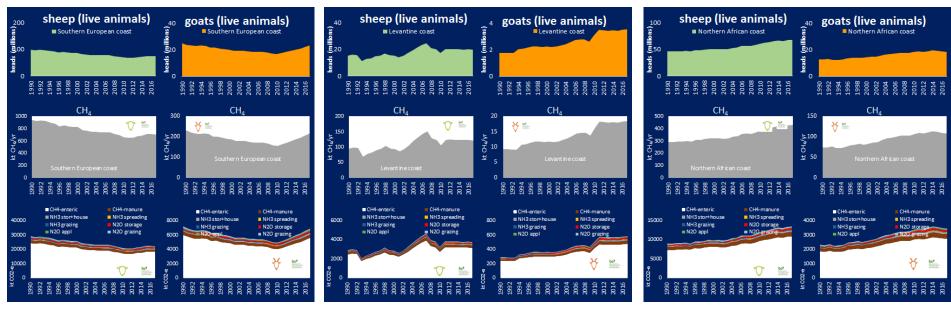

<u>lower</u> GHG emissions estimates compared with the estimate using the currently widely used IPCC (2006)

GHG (direct) from sheep in the Mediterranean basin


Using https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html


<u>lower</u> GHG emissions estimates compared with the estimate using the currently widely used IPCC (2006)


GHG (direct) from goats in the Mediterranean basin



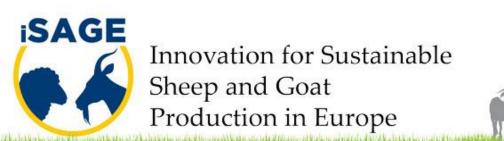
Using https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html

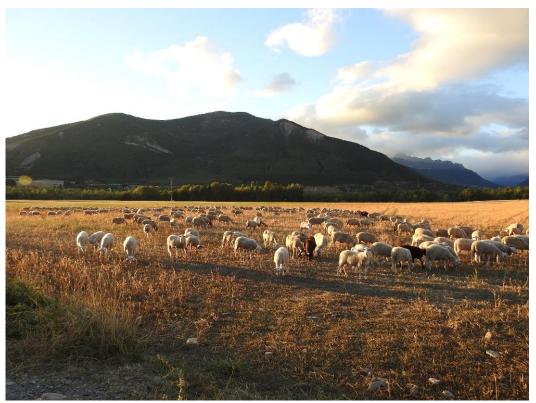
lower GHG emissions estimates compared with the estimate using the currently widely used IPCC (2006)

GHG from sheep and goats in the Mediterranean basin

Levantine coast

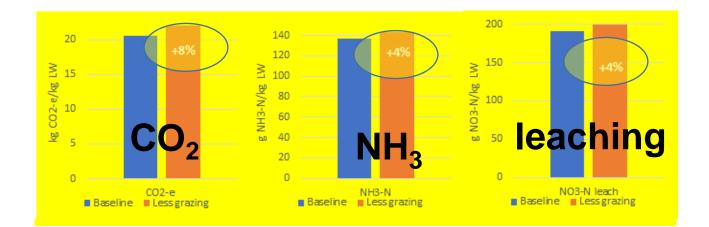
Northern African cost


Based on FAOstat and IPCC (2019). Southern European coast, from west to east: Spain, Gibraltar, France, Monaco, Italy, Malta, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Greece, Turkey, Levantine coast from north to south: Syrian Arab Republic, Cyprus, Lebanon, Israel, Palestine and Northern African cost, from east to west: Egypt, Libya, Tunisia, Algeria, Morocco

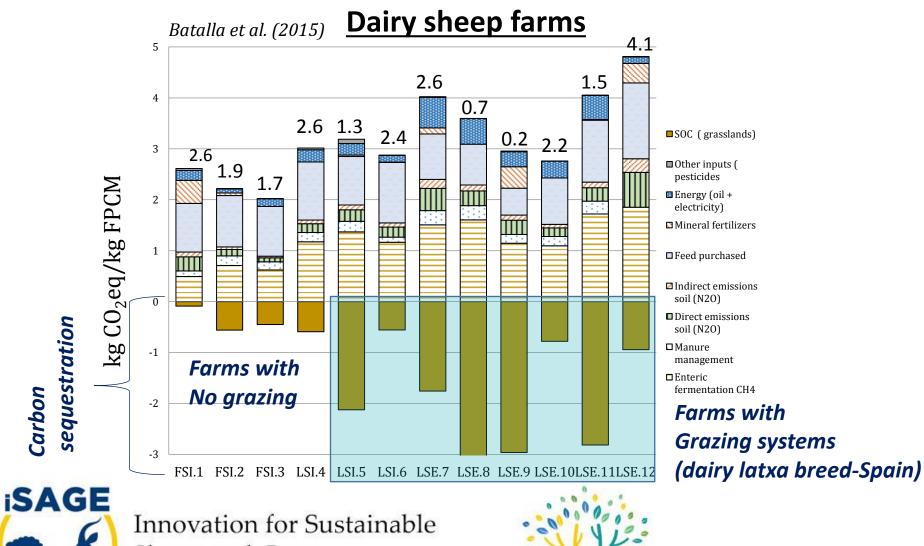

Southern European cost

How can small ruminants contribute to mitigation/adaptation of climate change and increase sustainability?

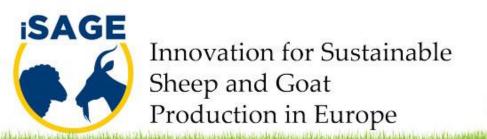
Do emissions drop by reducing sheep grazing in marginal land?

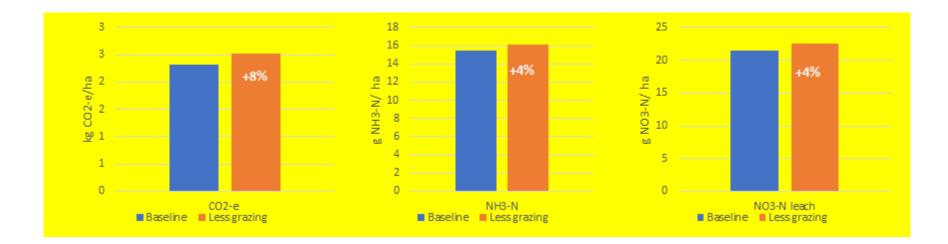


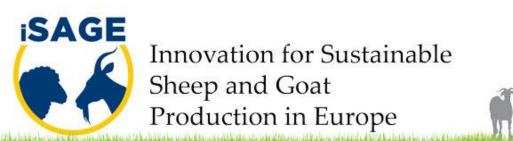
Example: meat sheep rasa-aragonesa in Spain


Efficiency Emissions= Animal product

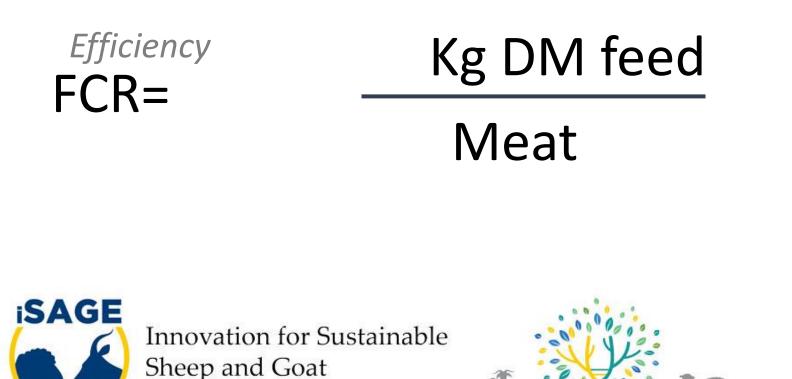
Do emissions drop by reducing sheep grazing in marginal land?



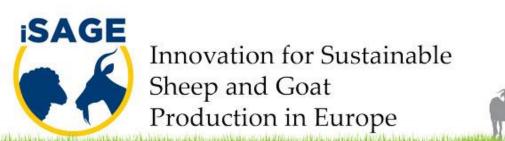



Sheep and Goat Production in Europe

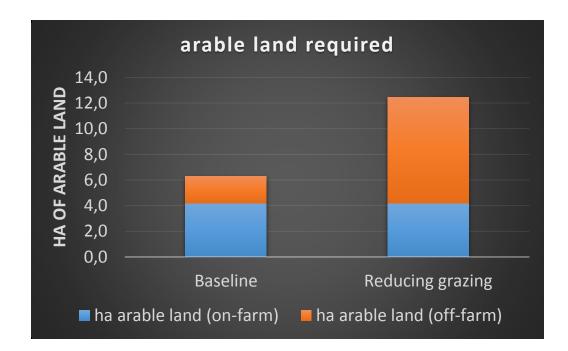
Efficiency Emissions= Land (ha)

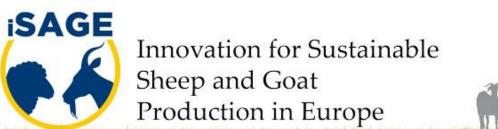


What are the environmental impact expressed per ha?



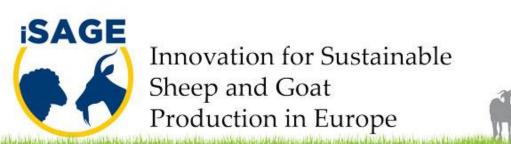
What is the efficiency (feed conversion ratio) or quality of land required to produce animal product?

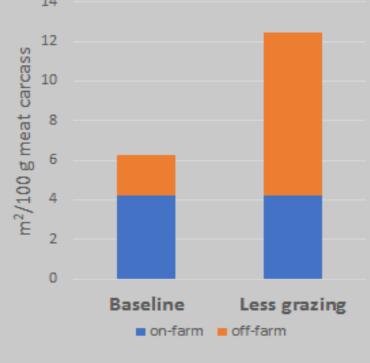



Production in Europe

Reducing grazing requires a shift from using marginal land (not suitable for other agricultural purposes except forest) to using more arable land (land suitable to grow crops that can be directly consumed by humans)

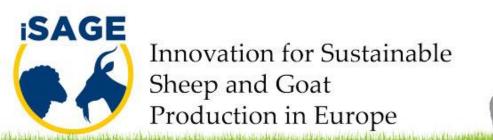
What is the surface used of non-competitive (good/arable) land?



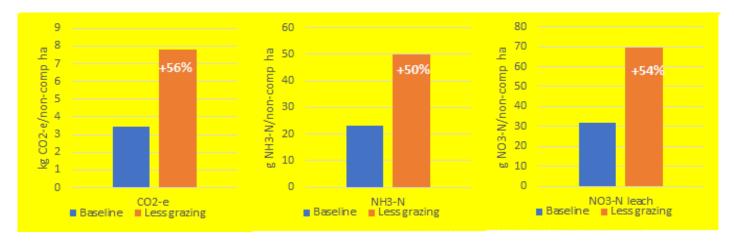


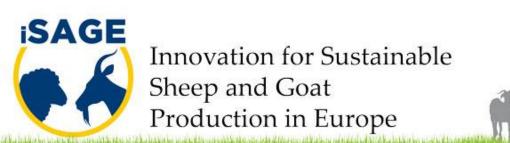
What is the efficiency (feed conversion ratio) or quality of land required to produce animal product?

Efficiency M² (Good land) Land impact= Meat

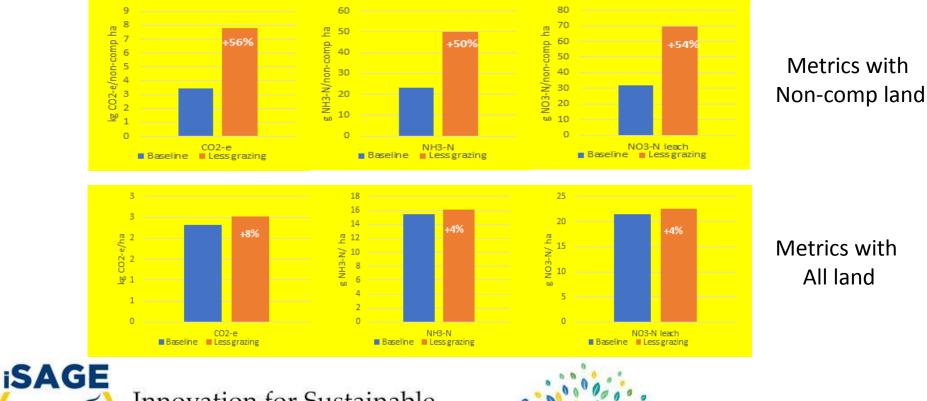


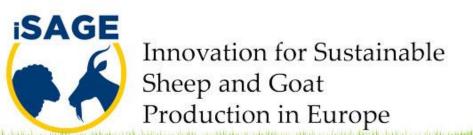
How much arable land would it be required to produce meat at different grazing level? 14




Efficiency Emissions= Good Land (ha)

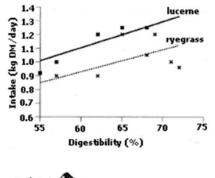
Reducing grazing in marginal land (for extensive systems), good for the environment?


What are the environmental impact expressed per ha of non-competitive land?


Reducing grazing in marginal land (for extensive systems), good for the environment?

What are the environmental impact expressed per ha of non-competitive land?

Improving feed quality can be achieved through:


- improved grassland management
- improved pasture species (e.g. grass and legumes mix), forage mix
- feed processing (e.g. chopping, urea treatment)
- strategic use of supplements, preferably locally available (FAO).

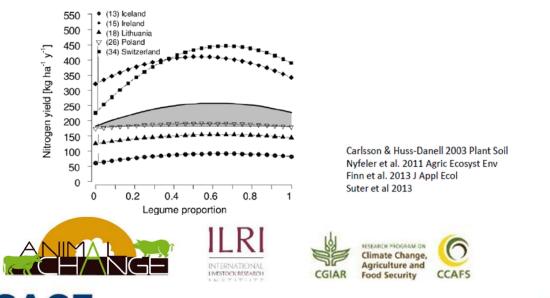
Improving feed sources (legumes)

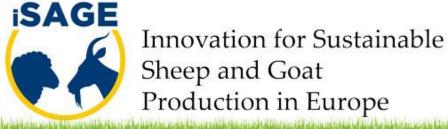
Legumes and diverse forage mixes

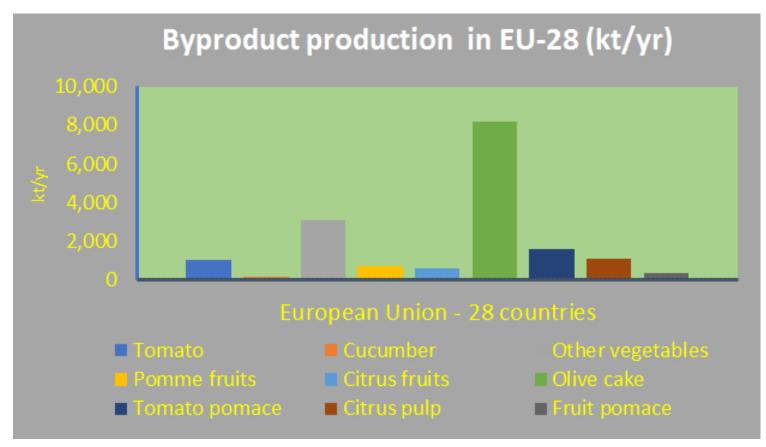
'Increase legumes in grasslands' can increase digestibility and subsequently stimulate an increase in milk yields (Gerber et al., 2013).

Bell, 2006

CCAFS

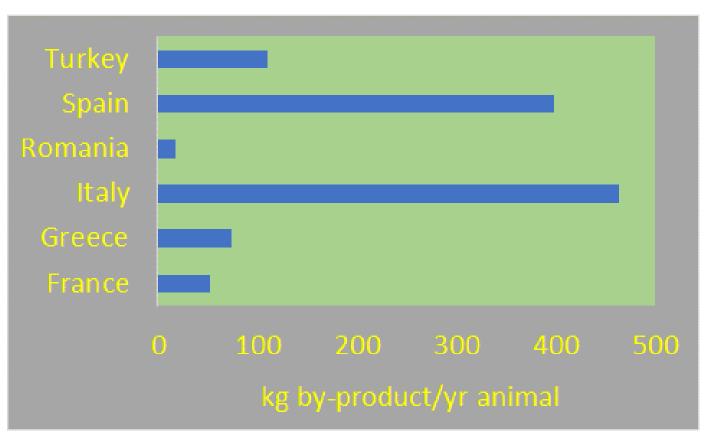


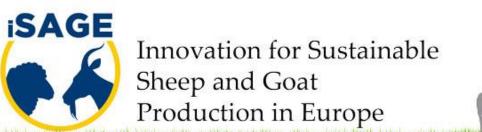



Improving feed sources (legumes)

'Increase legumes in grasslands':

- increases N-use efficiency and productivity (Kirwan et al., 2007).
- legumes can substantially reduce N₂O losses, a major contributor to GHG without loss in productivity.





Reference	🗕 Basal diet 📃	Alternative feed sources -	Supplement	🖵 Туре	🗊 Animal 👻	Breed 🗸
Abbeddou et al 2011	Barley straw/concentrate	Olive Cake and leaves,		Dairy	— глан у —	Awassi
Arco-Pérez et al 2017	Alfalfa hay/concentrate	Olive cake, Tomato surplus	Silage	Dairy	Daifŷ	iviur ciano-
Cabbidu et al 2004	Grass hay/concentrate	Olive cake	Silage	Dairy	t∂aîî†ŷ	Sarda
Chiofalo et al 2004	Alfalfa hay/concentrate	Olive cake		Dairy	dairy ewe	Comisana
Di Francia et al 2004	Oat hay/concentrate	Tomato pomace	Silage	Dairy	dairy ewe	Comisana
Fegeros et al 1995	Alfalfa hay/concentrate	Citrus pulp	Dried	Dairy		Karagouniko
Hadjipanayiotou	Barley straw/concentrate	Olive cake	Silage	Dairy	Dali ý	Chios, Damascus
Molina-Alcaide et al 2010	Alfalfa hay/concentrate	Olive cake	Feed blocks	Dairy	D'aiî ŷ °	iviui ciano-
Nudda et al 2006	Alfalfa hay/concentrate	Linseed cake	Extruded	Dairy	Daîi†ŷ	AlpinexSarda
Razzaghi et al 2015	Alfalfa hay/concentrate	Pomegranate seeu puip,		Dairy	D'aîî†ŷ Zooto	Saanen
Romero-Huelva et al 2013	Alfalfa hay/concentrate	Tomato fruits, citrus pulp,			Dairy	Murciano-
		brewer's grain and yeast		Dairy	goats	granadina
Romero-Huelva et al 2013	Alfalfa hay/concentrate	Tomato and cucumber fruit	Feed blocks	Delmi	Dairy	Murciano-
		wastes	Feed blocks I	Dairy	goats	granadina
Romero-Huelva et al 2017	Alfalfa hay/concentrate	Tomato fruits, citrus pulp,		Dairy	Dairy	Murciano-
	Anana nay/concentrate	brewer's grain and yeast		Dairy	goats	granadina
Sedighi-Vesagh t al 2014	Alfalfa hay/concentrate	Pistachio by-products		Dairy	Dairy	Saanen
Sedigni-vesagn tai 2014	Anana nay/concentrate	Pistachio by-products		Dany	goats	Saanen
Volanis et al 2004	Oat hay/concentrate	Orange fruit waste	Silage	Dairy	Dairy ewe	Sfakian
Ben Salem and Znaidi 2008	3 Wheat straw/concentrate	Tomato pulp, olive cake	Feed blocks	Meat	Lambs	Barbarine
Bueno et al 2002	Grass hay/concentrate	Citrus pulp		Meat	Kids	Saanen
Caparra et al 2005	Oat hay/concentrate	Citrus pulp	Dried	Meat	Lambs	Merino
Denek and Can 2006	Wheat straw/wheat grain	Tomato pomace	Silage	Meat	Rams	Awassi
Eliyahu et al 2015	Wheat hay/concentrate	Pomegranate pulp, grape pulp, avocado pulp	Silage	Meat	Lambs	Assaf
Lanza et al 2001	Wheat straw/barley+maize	Citrus pulp		Meat	Lambs	Barbaresca
Pirmohammadi et al 2006		Apple pomace	Silage, dried	Meat	Rams	Gezel
Scerra et al 2001	Oat hay/concentrate	Citrus pulp	Silage	Meat	Lambs	Merinizzata

Studies with alternative feed sources tested in small ruminants

Replace of conventional forage with food by-products

iSAGE

- Are these feed byproducts nutritionally good?
- (i) leaves and **olive cake** from olive oil extraction process (OS)
- (ii) tomato fruit waste (TS) from horticulture.
- If so GHG emissions? Compared with alternative uses: compost and biogas

Pardo et al. (2016)

Goat system (murciano-Granadina breed)

Alternative feed as adaptation

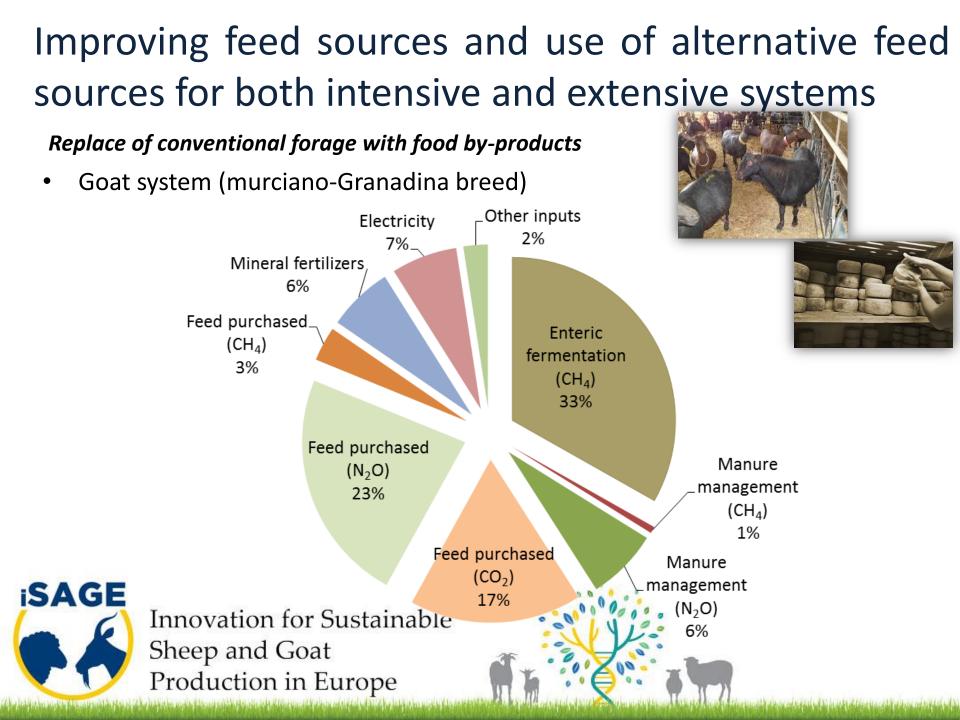
Improving feed sources and use of alternative feed sources for both intensive and extensive systems Replace of conventional forage with food by-products

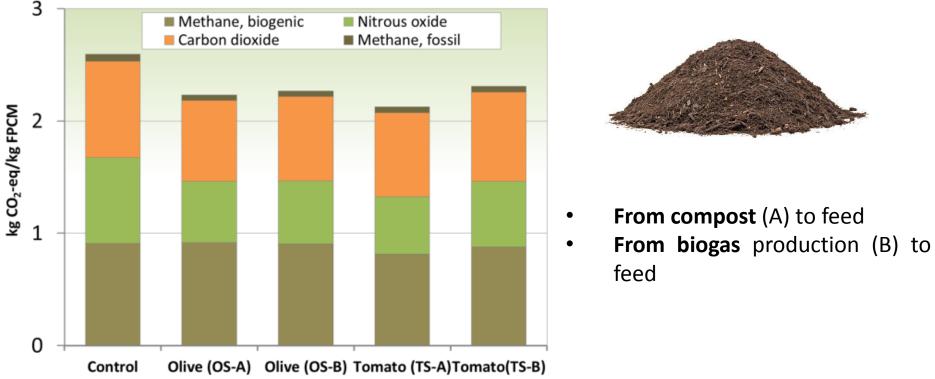
Table 2. Feed ingredients and nutritive value of the three proposed

diets for lactating goats

Feed type	Unit	Conventional Olive oil by- Tomato by-					
		diet (CO)	products	products			
			(OS)	(TS)			
	Ing	gredients					
Alfalfa hay	%	30	30	30			
Oat hay	%	20	_	_			
Oat grain	%	20	20	20			
Soybean meal	%	10	10	10			
Maize grain	%	10	10	10			
Beet pulp	%	10	10	10			
		Silage					
Olive leaves	%	_	10	-			
Olive cake	%	_	5	_			
Tomato waste	%	_	_	14			
Barley flour	%	_	5	2			
Wheat straw	%	-	-	4			
	Nutri	itive value ^A					
Crude protein	g/kg DM	196	169	177			
Neutral detergent fibre		330	292	353			
Metabolisable energy M		13.2	13.0	13.9			

ANutritive value expressed on dry matter (DM) basis.

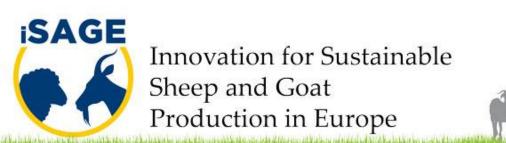

Table 3. Results of selected parameters from experiment of lactating goats under the three studied diets DMI, dry matter intake; FPCM, fat- and protein-corrected milk


Parameter	Conventional	Olive oil	Tomato by-products (TS)	
	dict (CO)	by-products (OS)		
	Production			
Dry matter intake (kg DMI/day)	0.90	1.45	1.30	
Milk production (kg FPCM/day)	0.80	1.07	1.01	
Milk yield (kg FPCM/kg DMI)	0.89	0.74	0.77	
	Enteric fermentati	on		
Methane production (g CH4/kg DMI)	21,4	19.6	19,2	
	Faeces			
Excreted (kg/day) ^A	0.28	0.43	0.34	
Excreted N (g N/day)	6.6	11.1	8.4	
Excreted N (%NIntake)	23.3	28.3	22.6	
	Urine			
Excreted (kg/day) ^A	1,14	1.43	1.34	
Excreted N (g N/day)	15.5	19.3	19.9	
Excreted N (%NIntake)	55.1	49.2	53.7	

AExpressed as fresh weight.

Pardo et al. (2016)

New dietary strategies tested achieve GHG reductions (~12–19% per kg milk).


Use of agri-food by-products for **feeding is the best option for GHG mitigation** in this case, vs alternative uses: bioenergy or soil amendment.

Other implications and trade-offs from non-GHG impacts must be considered (e.g. soil quality) which may play an important role in the Mediterranean context.

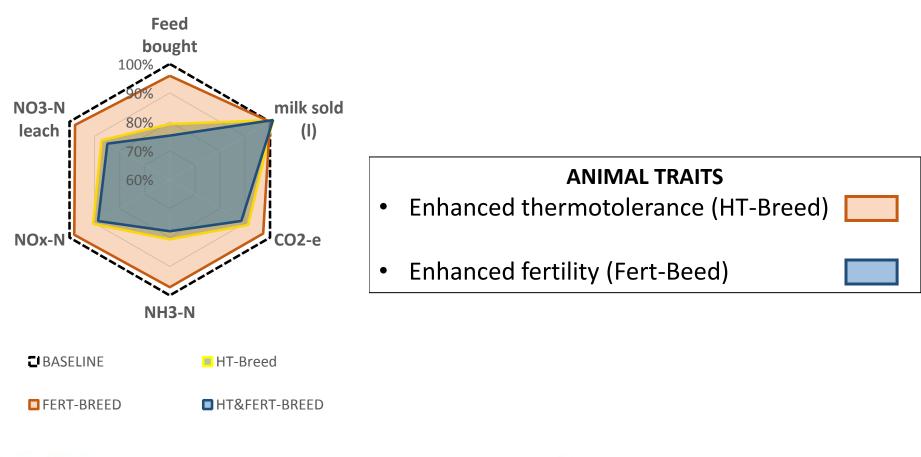
Sneep and Goat Production in Europe

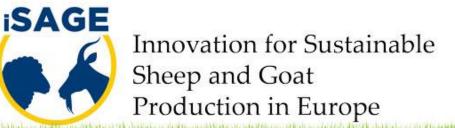
More adapted/resilient animal breeds and grass/pasture breed


The greatest emphasis should be on targeting traits that can have synergistic effects with more than one stressors for animals (e.g. animals with enhanced productivity and fertility regardless of climate) and plants (e.g. grasses that can both tolerate drought and flooding).

More adapted/resilient animal breeds and grass/pasture breed

Breeding strategies includes animals that increase animal thermo-tolerance and systems that shift to breeds more adapted to changing environments





Dairy sheep system in Greece (Chios breed)

More adapted/resilient animal breeds and grass/pasture breed

Innovations-Eskardillo

INDIVIDUAL DATA COLLECTION TECHNOLOGIES

CSIC

THE ESKARDILLO TOOL How individual animal data recording and interpretation can improve management of dairy goat farms

A D

THE ESKARDILLO TOOL IS A NEW TECHNOLOGY AIMING TO OPTIMESE FAILM MANAGEMENT BY MAKING USE OF "BIG DATA" GENERATED IN DAIRY GOAT FAILMS.

Dairy goat production systems in developed countries are experiencing an intensification process in terms of higher farm size, electronic identification, reproductive intensification, genetic selection and milking automation.

This new situation generates "big data" that can be used to aid farmers during the decision making process. Precision Livestock Farming and individual data management technologies offer a great opportunity to optimise farm management

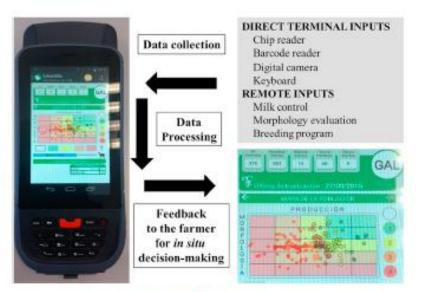


Fig. 1. Image of the Eskardillo terminal, data flows and a screenshot in which the population map of the goats in the farm according to their physiological stage, morphology and productivity are represented.

Innovations-Eskardillo

	Farm 1		Farm 2	2 Farm 3			Farm 4	
	2014	2018	2014	2018	2014	2018	2014	2018
Global warming (kg CO2 eq)	1.77	1.64	1.56	1.33	1.45	1.25	1.48	1.17
Terr. acidification (g SO2 eq)	14.1	13.3	12.9	10.7	11.8	10.0	12.7	9.9
Freshw. eutrophication	398	361	312	253	320	263	332	250
(mg P eq)								
Land use (m ² a crop eq)	2.2	1.9	2.2	1.8	1.9	1.5	2.2	1.6
Water consumption (litres)	140	121	355	303	107	76	272	198
Cumul. Energy Demand (MJ)	10.2	9.2	8.0	6.4	6.9	5.6	7.6	5.7

Table 27. Environmental impact of goat milk of the analysed farms (1 kg FPCM)

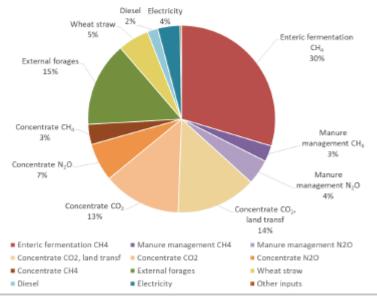


Figure 50. Broken-down representation of the carbon footprint of farm 2 in 2014

Innovations-Eskardillo

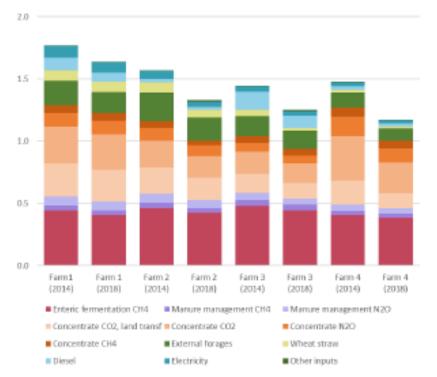
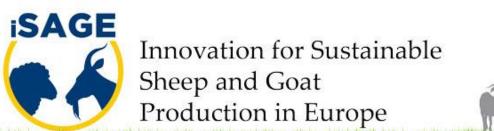
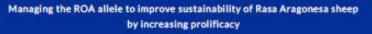
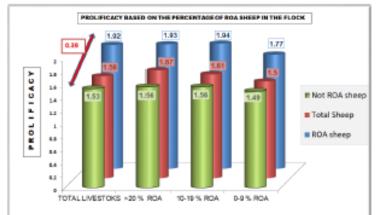




Figure 52. Carbon footprint of 1 kg FPCM in the four dairy goat farms before and after implementation of the Eskardillo tool

PROLIFICACY GENES THE ROA ALLELE

rosooviaragón

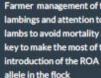

FEMALES CARRYING THE FecX[®]/ROA IN HETEROZYGOSITY INCREASE PROLIFICACY BY AN AVERAGE OF 0.36 LAMBS PER PARTUM.

Rasa Aragonesa is a local meat sheep breed raised in extensive systems in Aragón, Northeast Spain. It produces a high quality lamb which is marketed under the PGI label "Ternasco de Aragón".

The breed has a well-established breeding programme and an organism that manages the Flock Book, the UPRA. Prolificacy has been managed since 1994. Since its discovery in 2007, the ROA allele has been used to increase prolificacy in Rasa Aragonesa sheep. Artificial insemination is used to disseminate the allele across interested farms.

PRESENCE OF THE ROA GENE INCREASES LAMBS BORN PER PARTURITION BY 0.39.

INNOVATION AND SUSTAINABILITY


The sustainability of the sheep farms can be achieved by making them economically and socially viable. In this sense by incorporating the ROA allele, profitability can be increased without reducing the use of coarse pastures that are only grazed by sheep. It maintains livestock farming in the rural area thus preventing the abandonment of villages and maintain the surrounding landscape.

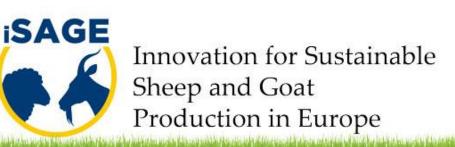
The ROA alelle has been sucessfully spread across the Rasa Aragonesa sheep population increasing to those farms willing technically prepared to increase prolificacy

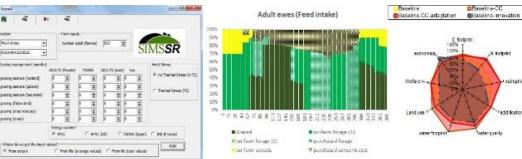
The ROA allele increases prolificacy without increasing fertility or lamb mortality

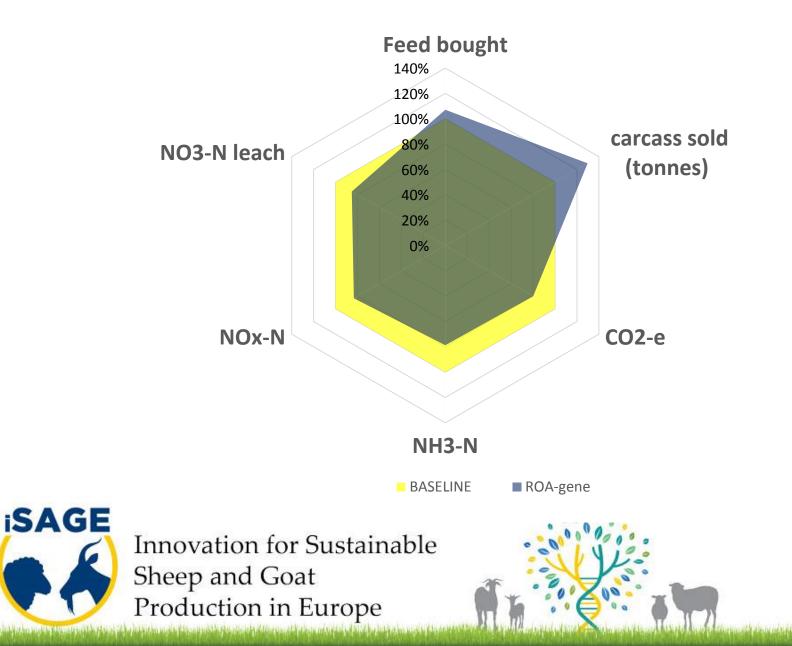
Farmer management of twin lambings and attention to lambs to avoid mortality are key to make the most of the

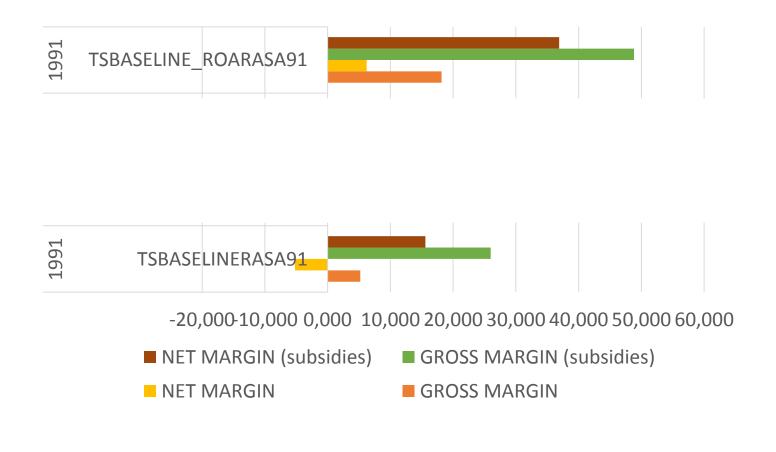
Genetic management at farm and population level is key to avoid downsides of the ROA allele related to infertility caused by homozygosity

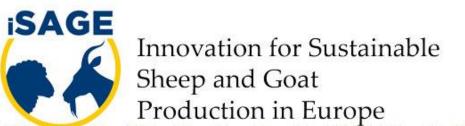
PROLIFICACY GENES INCREASE FARM PROFITABILITY WITHOUT INCREASING FLOCK SIZE OR INTENSIFYING PRODUCTION




- Breed: rasa Aragonesa
- Meat production (lamb)
- Location: Zaragoza (Spain)
- Number of ewes: 550


FEED


- Grazed mountain pastures
- Grazed rainfed alfalfa
- Alfalfa hay
- Cereals (homegrown barley)
- Barley straw (homegrown barley)
- Concentrates



Modelled with SIMS_{SR} (Del Prado et al. 2019)

Thanks

Merci

And the second

