

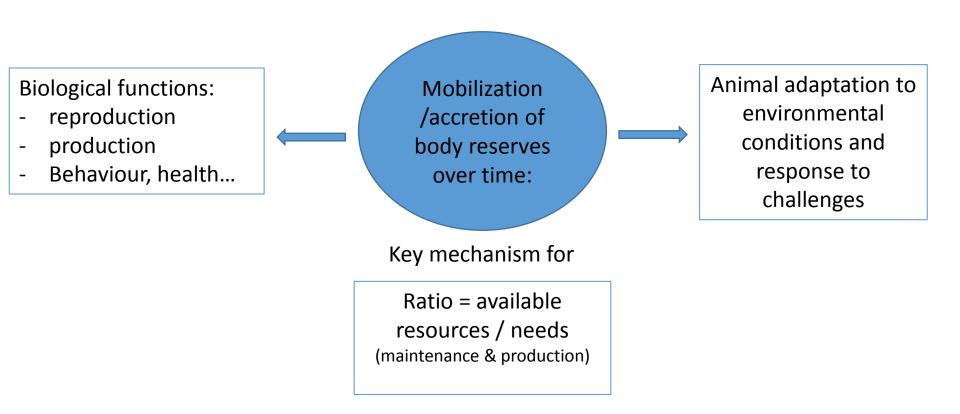
iSAGE Training Course and Workshop

INNOVATIONS TO IMPROVE SUSTAINABILITY IN THE SHEEP AND GOAT SECTOR (Zaragoza, Spain, from 10 to 13 December 2019)

Genetic approaches to improve sustainability and adapting to climate change (WP5)

→ novel phenotypes for improving animal resilience/adaptability : The body reserves mobilization-accretion process

Dominique Hazard et al. (dominique.hazard@inra.fr)



iSAGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 679302.

Body reserves dynamics – Why ?

Hypothesis = Animals better adapted or more resilient may show a better management of body reserves

Objective in farms : Contribution of animals to managing the ratio

Contribution of farmers to managing the ratio

Experimental facilities:

INRA experimental farm La Sapinière (Bourges, centre of France)

Meat sheep : Romane

intensives conditions N=65 N=63

- Exclusively indoor
- high inputs system

Meat sheep : Romane

Primiparous ewes: Multiparous ewes: N=180 N=220

- Exclusively outdoor
- Harsh environment: high seasonal variations (feed quality and quantity)
- Low inputs system (1 ewe/ha)
- One lambing /year (in April)

INRA experimental farm La Fage

(Roquefort sur Soulzon, south of France)

Dairy sheep : Lacaune

Semi-intensive conditions

- Indoor and outdoor
- Grazing (6 months : April to October)
- One lambing /year (in December or January)

iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.

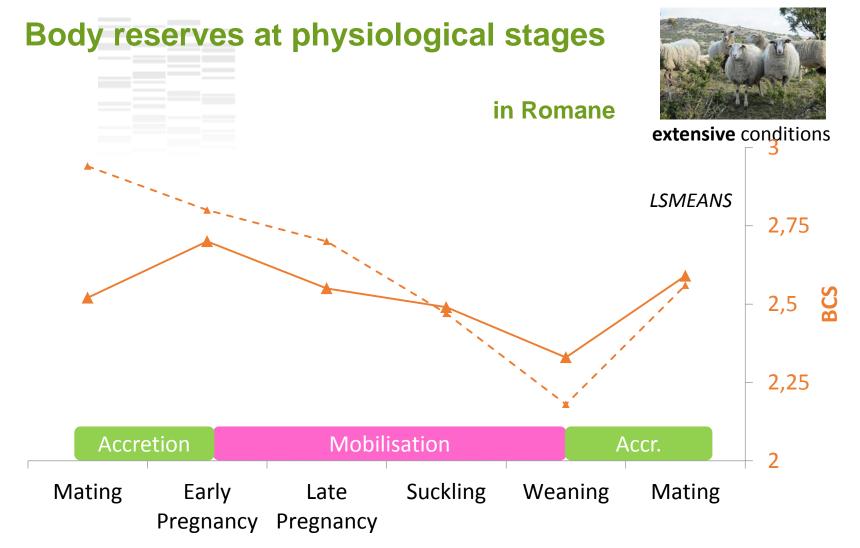
.03

Phenotypes:

Body Condition Score:

- \rightarrow from the original grid described by Russel et al. (1969)
- → A scale from 1 to 5 (0.25 or 0.1 increments)

- Key metabolites and hormones associated with lipids metabolism :
 - \rightarrow Blood sampling (plasma)
 - Non Esterified Fatty Acids (NEFA) : produced by adipose tissue during BR mobilization
 - Beta-hydroxybutyrate (BOHB) : produced by liver tissue during use of fatty acids to produce energy
 - Triiodothyronine (T3) : thyroid hormone produced to activate lipolysis

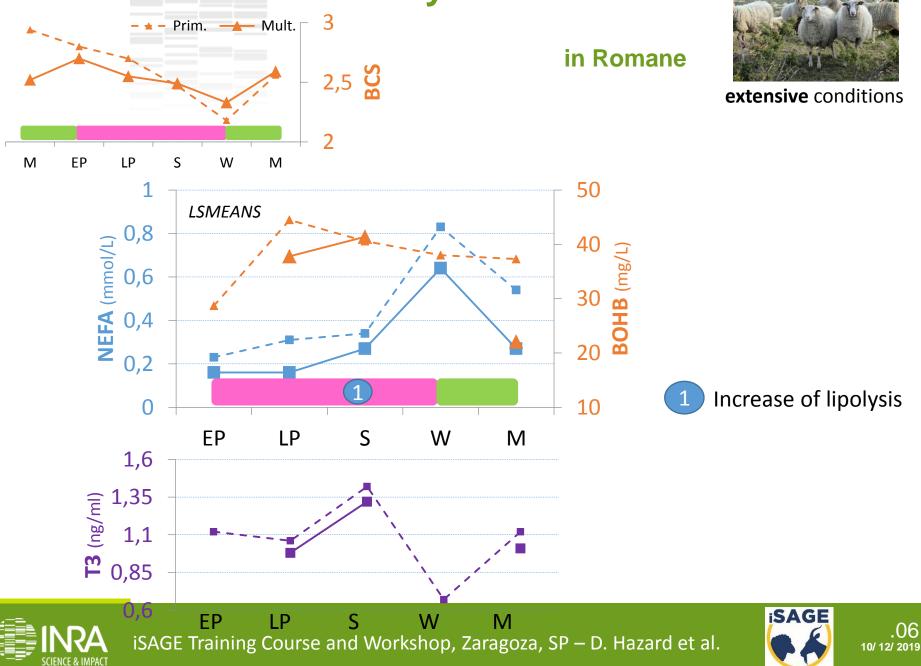

Longitudinal phenotyping (3 to 6 points / 1 to 2 productive cycles): mating, early pregnancy (2months), late pregnancy (2weeks before lambing), suckling (3 weeks after lambing), weaning

Objective: characterize novel phenotypes for BR and investigate genetic determinism

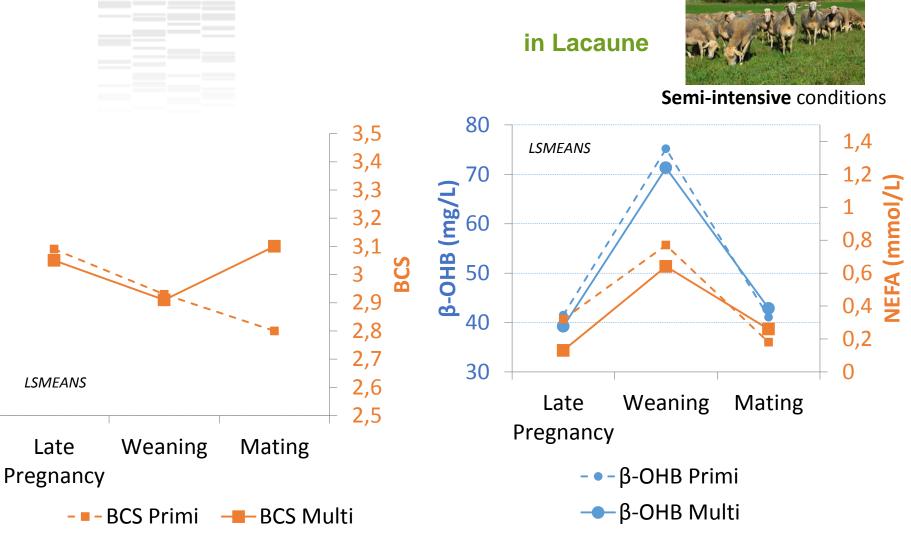
iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.

- - BCS Prim. - BCS Mult.

Alternation of BR accretion and mobilization throughout a productive cycle



iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.



.05

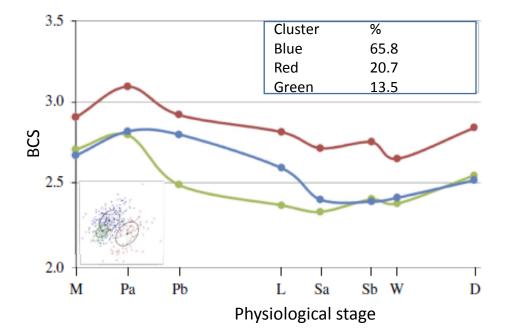
Biomarkers of Body Reserves

Body reserves at physiological stages

.07

10/ 12/ 2019

Body reserves trajectories


Multiparous ewes (n~500, background data)

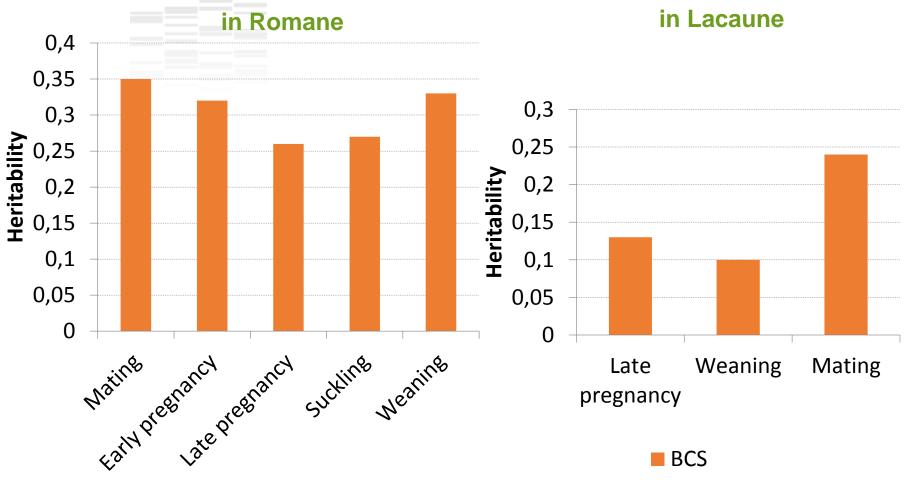
- 2nd lambing
- age = 2-3 years (2.5 in avg. in each cluster)
- Litter size = 2 lambs (pregnancy and suckling)

extensive conditions

→ Three main groups of ewes differing by their BR trajectories.

Macé et al, Animal, 2018

Inter-individual variability in the level and the form of BR trajectories.



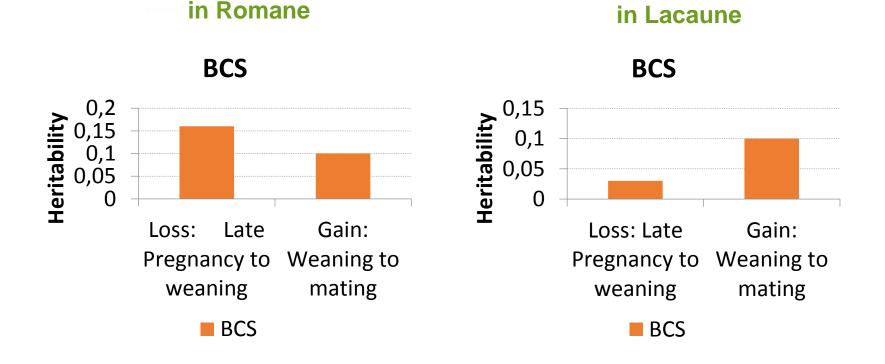
iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.

.08

Body reserves levels: heritability

BCS

→ BR levels are heritable traits.



iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.

.09

Body reserves changes over time: genetic parameters

BR mobilization and accretion processes are heritable traits.

10/ 12/ 2019

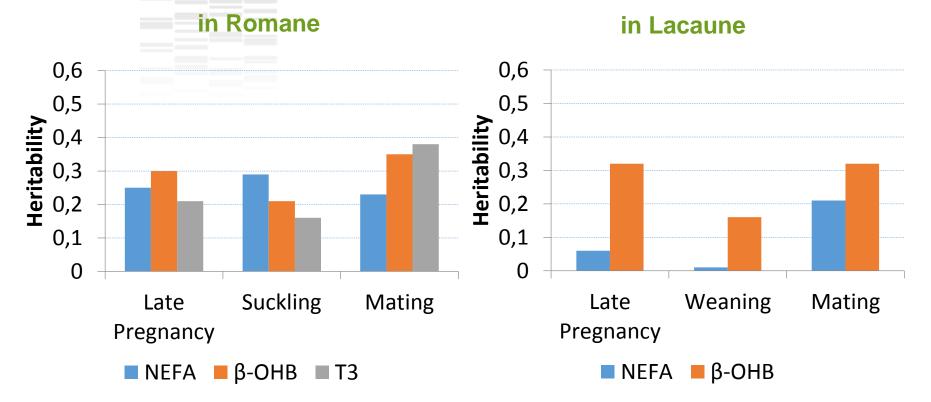
Body reserves changes over time: genetic correlation between loss and gain

in Romane

➔ BR mobilization (loss) and accretion (gain) processes are genetically linked.

	BCS gain
BCS loss	- 0.75 (±0.31)

in Lacaune


➔ No significant correlation between mobilization and accretion

→		BW loss	BW gain
	BCS loss	0.9 (±0.31)	
	BCS gain		0.65 (±0.14)

Biomarkers for body reserves: genetic parameters

→ Levels in biomarkers of BR metabolism are heritable traits.

→ Changes over time (ie loss or gain) in biomarkers are lowly heritable (h2 ~0.10, dairy and meat sheep).

Take Home Message :

- Body reserves successfully assessed with:
 - body condition score (and body weight)
 - metabolic biomarkers
- Body reserves dynamics:
 - alternation of mobilization and accretion processes throughout productive cycles
 - Inked to physiological and environmental factors
- Levels and variations in body reserves:
 - are heritable traits (low to moderate heritabilities)
 - are associated with genomic regions

➔ Genetic selection of sheep that better manage BR can be envisaged in future breeding programs to improve their resilience.

Acknowledgments

Hélène LARROQUE, Tiphaine MACÉ, Eliel GONZALEZ-GARCIA, Philippe HASSOUN, Anne TESNIERE, Sara PARISOT, Charlotte ALLAIN, Sébastien DOULS, Christian DURAND, Julien PRADEL, David PORTES, Regis THOMAS, et al.

Thanks for your attention

Photo : INRA C. Maître

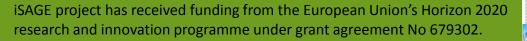
iSAGE Training Course and Workshop, Zaragoza, SP – D. Hazard et al.

.014 10/ 12/ 2019

iSAGE Training Course and Workshop

INNOVATIONS TO IMPROVE SUSTAINABILITY IN THE SHEEP AND GOAT SECTOR (Zaragoza, Spain, from 10 to 13 December 2019)

Genetic approaches to improve sustainability and adapting to climate change (WP5)


→ novel phenotypes for improving animal resilience/adaptability :
The body reserves mobilization-accretion process

Dominique Hazard et al. (dominique.hazard@inra.fr)

HORIZON 2020

Body reserves and production :

in Romane

in Lacaune

Genetic correlations:

	Birth weight (litter or lamb)	Lamb growth or weaning weight
BCS	NS to -0.3 (±0,10)	NS to -0.35 (±0,10)
BCS loss	- 0.40 (±0,10)	NS
BCS gain (Early Pregnancy)	0.34 (±0,16)	NS

Genetic correlations:

	Milk	
BCS at mating	-0.4 to -0.6 (±0,13)	
BCS loss	-0.45 (±0,30)	
BCS gain	- 0.6 (±0,13)	

➔ Higher level of production associated with lower BR level at mating and higher BCS loss during pregnancy and suckling in meat sheep. ➔ Higher level of production associated with lower BR level at mating and lower BCS gain before mating in dairy sheep.

