

Optimal breeding strategies to enhance the sustainability and profitability of the European sheep and goat sector; recommendations and guidelines.

Georgios Banos, SRUC, UK

MJ Carabaño, ESP; A Triantafyllidis, GRC; R Zanoli, ITA; D Yañez Ruiz, ESP; K Matthews, UK

Leading the way in Agriculture and Rural Research, Education and Consulting

The iSAGE project

"Best" animals selected to breed next generation

- Farmers
- Industry
- Markets
- Consumers
- Traditions
- Regulation
- Environment
- "Best"

•

"Best" animals selected to breed next generation

Productive – milk, meat etc. product quality **Healthy** ۲ **Fertile** • **'Best**" Reproductive ۲ Well shaped ۲ Docile Good feed conversion Unlikely to cull involuntarily ۲

d to breed next generation

Best"

Long-term, permanents effects

- Productiy
 - milk, meat et
 - product quali
- Healthy
- Fertile
- Reproductive
- Well shaped
- Docile
- Good feed conversion
- Unlikely to cull involuntarily

Long-term, permanents effects

- Productiy
 - milk, meat et
 - product quali
- Healthy
- Fertile
- Reproductive
- Well shaped
- Docile
- Good feed conversion
- Unlikely to cull involuntarily

Definitions of "Best" updated

d to breed next generation

"Bost

New challenges

- Climate changes impacting on
 - Pastures
 - Animal production
- Increased weather volatility impacting on
 - Animal performance
- Need to define and quantify this
 - Stability in performance regardless of weather
 - Resilience to weather change

The research

- 1.3 mil sheep and goats
- 21 breeds
- 6 countries
- Diverse climates, environments and systems
- Derive novel animal traits
- Genetic analysis
- Breeding strategies

Novel animal traits

- Joint analysis of animal records
 - live body weight
 - daily milk/protein yield
 - fertility (conception)
 - feed intake
- with weather variables
 - temperature, humidity, THI
 - before or at the time of performance record

Novel animal traits

- How do animals react to environmental (weather) challenge?
- Fit "reaction norm" functions into "random regression models"

 $Y_{ij} = X + f(\beta, X_j) + f_i(a_i, X_j) + f_i(p_i, X_j) + e_{ij}$

Novel animal traits

- Capture changes in performance as weather (e.g. temperature) fluctuates
 - Accounting for other factors affecting performance

Average reaction

Animal level

Individual reaction

Atlantic – average reaction

- Temperate range
 - Not too extreme (temp. -3 19°C)
- Positive reaction to increasing temperature

 equally negative reaction to decreasing temperature

Milk yield (goats)

50

80 RH

Tava d10ava

iSAGE

Sánchez-Molano et al. 2019. BMC Genetics

Mediterranean – average reaction

- High temperature extreme (> 30°C hot!)
- Heat stress drives performance down

Individual variation

iSAGE

- Variation observed among individual animals
 - Different animals react differently to weather challenge
- "Flat" lines → unaffected performance (desirable)
- Otherwise
 performance affected by weather volatility

Individual variation

• Level of variation equal to that for other traits

 Useful to identify the "unaffected" animals (considered well-adapted, resilient) vis-à-vis the most affected ones

iSAG

Novel animal traits - summary

- Possible to derive
- No additional recording needed
 - Current performance records + meteorological data
 - Need to ensure proper animal recording in any case
 - Data analysis software available
- Atlantic (North)
 - Stability to weather change in "cold range" cold stress
- Mediterranean (South)
 - One trait <u>before</u> the heat stress threshold cold stress
 - Another <u>after</u> the heat stress threshold heat stress
- There is variation among individuals

 Genetic?

- Animal phenotypes, genotypes and pedigree
- Yes! part of the variation is genetic
- Heritability meat sheep (growth resilience)
 - 0.14 0.16 lamb trait
 - 0.05 0.10 ewe trait
- Heritability dairy sheep (production/fertility resilience)
 - 0.10 0.20 (cold stress)
 - 0.14 0.21 (heat stress)
- Heritability dairy goats (production resilience)
 - **0.10 0.12**

Largely polygenic traits but some genomic areas of interest

•Milk protein yield (sheep)

- Part of the variation is genetic
- May selectively breed to enhance resilience and adaptation
- What would the impact be on other traits of interest?

- Antagonistic correlation with some animal traits
- Meat sheep
 - Weaning weight
 - Carcass quality
- Dairy sheep
 - Milk, fat, protein yield
- Dairy goats
 Milk yield

Multi-trait breeding goals Selection index

• Need to enhance both level and stability of performance

Selective breeding strategies

- zero

- Simulate and assess breeding programmes •
- Varying levels of emphasis on "novel" traits vis-à-vis "traditional" traits
- 20 generations of selection
- **20 replicates**
- Assessment
 - Possible losses if resilience/adaptability traits do not feature in the breeding goal
 - Impact on individual traits
 - Stakeholder preference

Meat sheep Lambs **Ewes** - increase Weaning weight - increase - increase Litter size - increase to 1.8 - increase Longevity - increase **Resilience**

Weaning weight **Carcass weight** Muscle depth Fat depth Resilience

- stabilise

- zero

Selective breeding strategies

- Simulate and assess breeding programmes
- Varying levels of emphasis on "novel" traits vis-à-vis "traditional traits"
- 20 generations of selection
- 20 replicates •
- Assessment
 - Possible losses if resilience/adaptability traits do not feature in the breeding goal
 - Impact on individual traits
 - Stakeholder preference

Dairy sheep

Milk protein yield **Fertility**

- Heat stress

- - increase
 - increase
- Mastitis incidence avoid increase
 - zero

Milk yield Longevity Mastitis incidence Age at first kidding Resilience

Dairy goats

- increase
- increase
- avoid increase
- decrease to 12 mo
- zero

Production losses

Production losses

ISAGE

Impact on individual traits

iSAGE

Impact on individual traits

iSAGE

Stakeholder preferences

- Participatory approach
- On-line survey
- Perceived benefits
- Relative importance
 - Rank of animal traits

Stakeholder preferences

♠ Projects > ■ Trait selection for sheep and goats > 목 Traits selection for meat sheep-SURVEY > Criteria

Criteria

COLLAPSE ALL EXPORT

Lamb live weight change due to temp. (g/°C):

Lowest ranked

lamb live weight variation (+/-) of 847 g/°C

no change

Highest ranked

Highest ranked

Lamb weaning weight (kg):

Lowest	ranked
	5 kg less
	as it is (27 Kg)
	5 kg more

www.1000minds.com

Stakeholder preferences – relative importance

Meat sheep			
Ewe longevity	22%		
Ewe litter size	19%		
Lamb carcass weight	18%		
Lamb weaning weight	16%		
Lamb carcass muscle depth	12%		
Lamb resilience	5%		
Lamb carcass fat depth	4%		
Ewe resilience	4%		

Dairy sheep			
Mastitis	37%		
Conception rate	24%		
Vilk yield	24%		
Resilience	15%		

Recommended emphasis on resilience

- Meat sheep: 5-10%
- Dairy sheep:
- Dairy goats: ~10%
- Minimise performance losses due to weather volatility

~15%

- Minimise adverse impact on individual traits
- Maximise value of selection index
- Consistent with stakeholder preferences
- Tailored to local breed characteristics

Local breed studies

- More suitable than newly introduced breeds
- Differences in resilience among local breeds
- Targeted approach required at multiple levels
 - Government, famers, associations, scientists

Concluding remarks

- Selective breeding

 one of the means to address current and future challenges
- Failing to consider animal resilience

 suboptimal

Most suitable animals for each environment

- New tools, new knowledge from multi actor collaboration
- Industry/stakeholder uptake

Support decision-making

